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NLS Soliton Trains

The idea of the adiabatic approximation to the soliton interactions
(Karpman&Solov’ev (1981)) led to effective modeling of the
N-soliton trains of the perturbed scalar NLS eq.:

iut +
1

2
uxx + |u|2u(x , t) = iR[u]. (1)

By N-soliton train we mean a solution of the NLSE (1) with initial
condition

u(x , t = 0) =
N∑

k=1

uk(x , t = 0), (2)

uk(x , t)=2νkeiφk sechzk , zk =2νk(x−ξk(t)), ξk(t)=2µkt+ξk,0,

φk =
µk

νk
zk + δk(t), δk(t)=2(µ2

k + ν2
k )t + δk,0.

Here µk are the amplitudes, νk – the velocities, δk – the phase
shifts, ξk - the centers of solitons.
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NLS Adiabatic Approximation

The adiabatic approximation holds if the soliton parameters satisfy
the restrictions

|νk − ν0| � ν0, |µk − µ0| � µ0, |νk − ν0||ξk+1,0 − ξk,0| � 1, (3)

where ν0 and µ0 are the average amplitude and velocity
respectively. In fact we have two different scales:

|νk − ν0| ' ε
1/2
0 , |µk − µ0| ' ε

1/2
0 , |ξk+1,0 − ξk,0| ' ε−1

0 .

In this approximation the dynamics of the N-soliton train is
described by a dynamical system for the 4N soliton parameters. In
our previous works we investigate it in presence of periodic and
polynomial potentials. Now, we are interested in what follow
perturbation(s) by external sech-potentials:

iR[u] ≡ V (x)u(x , t), V (x) =
∑

s

cssech2(2ν0x − ys). (4)

The latter allows us to realize the idea about localized potential
wells(depressions) and humps.
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Potentials

Figure: 1. Single sech-potential vs. composite potential well
V (x) =

∑32
s=0 cssech2(x − xs), cs = −10−1, xs = −16 + sh, h = 1,

s = 0, ..., 32.
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Perturbed Vector NLS

Here we generalize to the perturbed vector NLS

i~ut +
1

2
~uxx + (~u†, ~u)~u(x , t) = iR[~u]. (5)

The corresponding vector N-soliton train is determined by the
initial condition

~u(x , t = 0) =
N∑

k=1

~uk(x , t = 0), ~uk(x , t) = 2νke iφk sechzk~nk , (6)

and the amplitudes, the velocities, the phase shifts, and the centers
of solitons are as in Eq.(2). The phenomenology, however, is
enriched by introducing a constant polarization vectors ~nk that are
normalized by the conditions

(~n†k ,~nk) = 1,
n∑

s=1

arg~nk;s = 0.
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Variational approach and evolution

We use the variational approach (Anderson and Lisak (1986)) and
derive the GCTC model. Like the (unperturbed) CTC, GCTC is a
finite dimensional completely integrable model allowing Lax
representation.
The Lagrangian of the vector NLS perturbed by external potential
is:

L[~u] =

∫ ∞

−∞
dt

i

2

[
(~u†, ~ut)− (~u†t , ~u)

]
− H,

H[~u] =

∫ ∞

−∞
dx

[
−1

2
(~u†x , ~ux) +

1

2
(~u†, ~u)2 − (~u†, ~u)V (x)

]
.

(7)

Then the Lagrange equations of motion:

d

dt

δL
δ~u†t

− δL
δ~u†

= 0, (8)

coincide with the vector NLS with external potential V (x).
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Variational approach and evolution

Next we insert ~u(x , t) =
∑N

k=1 ~uk(x , t) (see eq. (6)) and integrate
over x neglecting all terms of order ε and higher.
Thus after long calculations we obtain:

L =
N∑

k=1

Lk +
N∑

k=1

∑
n=k±1

L̃k,n, Lk,n = 16ν3
0e−∆k,n(Rk,n + R∗k,n),

Rk,n = e i(δ̃n−δ̃k )(~n†k~nn), δ̃k = δk − 2µ0ξk ,

∆k,n = 2sk,nν0(ξk − ξn) � 1, sk,k+1 = −1, sk,k−1 = 1.
(9)

where

Lk = −2iνk

(
(~n†k,t ,~nk)− (~n†k ,~nk,t)

)
+ 8µkνk

dξk
dt

− 4νk
dδk
dt

+ . . .

(10)
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Variational approach and evolution

The equations of motion are given by:

d

dt

δL
δpk,t

− δL
δpk

= 0, (11)

where pk = {δk , ξk , µk , νk ,~n
†
k}.

Let λk = µk + iνk , Xk = 2µkΞk + Dk and

Qk = −2ν0ξk + k ln 4ν2
0 − i(δk + δ0 + kπ − 2µ0ξk). (12)
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Then:

dλk

dt
= −4ν0

(
eQk+1−Qk (~n†k+1,~nk)− eQk−Qk−1(~n†k ,~nk−1)

)
+ Mk + iNk ,

dQk

dt
= −4ν0λk + 2i(µ0 + iν0)Ξk − iXk ,

(13)
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Potential’s impact

where

Nk [u]=
1

2
Re

∫ ∞

−∞
R[uk ] sech zk e−iφk dzk ,

Mk [u]=
1

2
Im

∫ ∞

−∞
R[uk ] tanh zk sech zk e−iφk dzk ,

Ξk [u]=
1

4
Re

∫ ∞

−∞
R[uk ]zk sech zk e−iφk dzk ,

Dk [u]=
1

2νk
Im

∫ ∞

−∞
R[uk ](1−zk tanh zk) sech zk e−iφk dzk ,
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Connection with PCTC

So, we have a generalization of CTC:

dλk

dt
=−4ν0

(
eQk+1−Qk (~n†k+1,~nk)− eQk−Qk−1(~n†k ,~nk−1)

)
+Mk +iNk ,

dQk

dt
=−4ν0λk + 2i(µ0 + iν0)Ξk−iXk ,

d~nk

dt
= O(ε),

(14)
The explicit form of Mk , Nk , Ξk and Dk for the potential chosen is
given by

Mk =
∑

s

2csνkP(∆k,s), Nk = 0,

Ξk = 0, Dk =
∑

s

csR(∆k,s).

(15)

where ∆k,s = 2ν0ξk − ys and the functions P(∆) and R(∆) are
known explicitly.
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Integrals

Figure: 2. P and R functions: for a single sech-potential and for the
composite potential.
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Integrals

For the potential well

V (x , ys) = cs [tanh(2ν0x − yi)− tanh(2ν0x − yf)]

functions

P(∆) =
sinh∆−∆ cosh∆

sinh3 ∆

and

R(∆) =
exp (−3∆) + (4∆2 − 1) cosh ∆ + (3− 8∆) sinh∆

8 sinh3 ∆
.
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Polarization Vectors

Now we have additional equations describing the evolution of the
polarization vectors. But note, that their evolution is slow, and in
addition the products (~n†k+1,~nk) multiply the exponents eQk+1−Qk

which are also of the order of ε. Since we are keeping only terms of
the order of ε we can replace (~n†k+1,~nk) by their initial values

(~n†k+1,~nk)
∣∣∣
t=0

= m2
0ke2iφ0k , k = 1, . . . ,N − 1 (16)

M. Todorov Multisoliton Interactions for the Manakov System



Lax representation of CTC

The CTC is completely integrable model; it allows Lax
representation Lt = [A.L], where:

L =
N∑

s=1

(bsEss + as(Es,s+1 + Es+1,s)) ,

A =
N∑

s=1

(as(Es,s+1 − Es+1,s)) ,

(17)

where as = exp((Qs+1 − Qs)/2), bs = 1
2 (µs,t + iνs,t) and the

matrices Eks are determined by (Eks)pj = δkpδsj . The eigenvalues
of L are integrals of motion and determine the asymptotic
velocities.
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Lax representation of GCTC

The GCTC is also a completely integrable model because it allows
Lax representation L̃t = [Ã.L̃], where:

L̃ =
N∑

s=1

(bsEss + ãs(Es,s+1 + Es+1,s)) ,

Ã =
N∑

s=1

(ãs(Es,s+1 − Es+1,s)) ,

(18)

where ãs = m0ke iφ0k as , bs = µs,t + iνs,t . Like for the scalar case,
the eigenvalues of L̃ are integrals of motion. If we denote by
ζs = κs + iηs (resp. ζ̃s = κ̃+ i η̃s) the set of eigenvalues of L (resp.
L̃) then their real parts κs (resp. κ̃s) determine the asymptotic
velocities for the soliton train described by CTC (resp. GCTC).
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RTC and CTC. Asymptotic regimes

While for the RTC the set of eigenvalues ζs of the Lax matrix are
all real, for the CTC they generically take complex values, e.g.,
ζs = κs + iηs .
Hence, the only possible asymptotic behavior in the RTC is an
asymptotically separating, free motion of the solitons. In opposite,
for the CTC the real parts κs ≡ Reζs of eigenvalues of the Lax
matrix ζs determines the asymptotic velocity of the sth soliton.
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Effects of the polarization vectors on the soliton interaction

Thus, starting from the set of initial soliton parameters we can
calculate L|t=0 (resp. L̃|t=0), evaluate the real parts of their
eigenvalues and thus determine the asymptotic regime of the
soliton train.

Regime (i) κk 6= κj (κ̃k 6= κ̃j) for k 6= j – asymptotically
separating, free solitons;

Regime (ii) κ1 = κ2 = · · · = κN = 0
(κ̃1 = κ̃2 = · · · = κ̃N = 0) – a “bound state;”

Regime (iii) group of particles move with the same mean
asymptotic velocity and the rest of the particles will
have free asymptotic motion.

Varying only the polarization vectors one can change the
asymptotic regime of the soliton train.
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Problem Formulation: Conservation Laws

Define “mass”, M, (pseudo)momentum, P, and energy, E :

M
def
=

1

2β

∫ L2

−L1

(
|ψ|2 + |φ|2

)
dx , P

def
= −

∫ L2

−L1

I(ψψ̄x + φφ̄x)dx ,

E
def
=

∫ L2

−L1

Hdx , where (19)

H def
= β

(
|ψx |2 + |φx |2

)
− 1

2α1(|ψ|4 + |φ|4)
−(α1 + 2α2)

(
|φ|2|ψ|2

)
− 2Γ[<(ψ̄φ̄)]

is the Hamiltonian density of the system. Here −L1 and L2 are the
left end and the right end of the interval under consideration.
The following conservation/balance laws hold, namely

dM

dt
= 0,

dP

dt
= H

∣∣
x=L2

−H
∣∣
x=−L1

,
dE

dt
= 0, (20)
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Numerical Method

To solve the main problem numerically, we use an implicit
conservative scheme in complex arithmetic.

i
ψn+1

i − ψn
i

τ
=

β

2h2

(
ψn+1

i−1 − 2ψn+1
i + ψn+1

i+1 + ψn
i−1 − 2ψn

i + ψn
i+1

)
+
ψn+1

i + ψn
i

4

[
α1

(
|ψn+1

i |2 + |ψn
i |2

)
+ (α1 + 2α2)

(
|φn+1

i |2 + |φn
i |2

)]
− 1

2Γ
(
φn+1

i + φn
i

)
,

i
φn+1

i − φn
i

τ
=

β

2h2

(
φn+1

i−1 − 2φn+1
i + φn+1

i+1 + φn
i−1 − 2φn

i + φn
i+1

)
+
φn+1

i + φn
i

4

[
α1

(
|φn+1

i |2 + |φn
i |2

)
+ (α1 + 2α2)

(
|ψn+1

i |2 + |ψn
i |2

)]
− 1

2Γ
(
ψn+1

i + ψn
i

)
.
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Numerical Method: Internal Iterations

i
ψn+1,k+1

i − ψn
i

τ
=

β

2h2

(
ψn+1,k+1

i−1 − 2ψn+1,k+1
i + ψn+1,k+1

i+1

+ ψn
i−1 − 2ψn

i + ψn
i+1

)
+
ψn+1,k

i + ψn
i

4

[
α1

(
|ψn+1,k+1

i ||ψn+1,k
i |+ |ψn

i |2
)

+(α1 + 2α2)
(
|φn+1,k+1

i ||φn+1,k
i |+ |φn

i |2
)]

i
φn+1,k+1

i − φn
i

τ
=

β

2h2

(
φn+1,k+1

i−1 − 2φn+1,k+1
i + φn+1,k+1

i+1

+ φn
i−1 − 2φn

i + φn
i+1

)
+
φn+1,k

i + φn
i

4

[
α1

(
|φn+1,k+1

i ||φn+1,k
i |+ |φn

i |2
)

+(α1 + 2α2)
(
|ψn+1,k+1

i ||ψn+1,k
i |+ |ψn

i |2
)]
.
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Numerical Method: Conservation Properties

It is not only convergent (consistent and stable), but also
conserves mass and energy, i.e., there exist discrete analogs for
(20), which arise from the scheme.

Mn =
N−1∑
i=2

(
|ψn

i |2 + |φn
i |2

)
= const,

En =
N−1∑
i=2

−β
2h2

(
|ψ n

i+1 − ψ n
i |2 + |φ n

i+1 − φ n
i |2

)
+
α1

4

(
|ψn

i |4 + |φn
i |4

)
+ 1

2(α1 + 2α2)
(
|ψn

i |2|φn
i |2

)
− Γ<[φ̄n

i ψ
n
i ] = const,

for all n ≥ 0.

These values are kept constant during the time stepping. The
above scheme is of Crank-Nicolson type for the linear terms and
we employ internal iterations to achieve implicit approximation of
the nonlinear terms, i.e., we use its linearized implementation.

M. Todorov Multisoliton Interactions for the Manakov System



Effects of the external potentials. Numeric checks vs
Variational approach

The predictions and validity of the CTC and GCTC are compared
and verified with the numerical solutions of the corresponding
CNSE using fully implicit difference scheme of Crank-Nicolson type,
which conserves the energy, the mass, and the pseudomomentum.
The scheme is implemented in a complex arithmetics. Such
comparison is conducted for all dynamical regimes considered.

First we study the soliton interaction of the pure Manakov
model (without perturbations, V (x) ≡ 0) and with vanishing
cross-modulation α2 = 0;

2- and 3-soliton configurations and transitions between
different asymptotic regimes under the effect of well- and
hump-like external potential.
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Three-soliton configuration in free asymptotic regime
corresponding to real parts of eigenvalues of the Lax pair
Reζ1 = −0.0116, Reζ2 = 0, Reζ3 = 0.0116

Figure: 3. Free potential behavior (left); External potential well

V (x) =
∑32

s=0 cssech2(x − xs), cs = −10−1, xs = −16 + sh, h = 1,
s = 0, ..., 32(right).
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Three-soliton configuration in bound state regime
corresponding to real parts of eigenvalues of the Lax pair
Reζ1 = Reζ2 = Reζ3 = 0

Figure: 4. Free potential behavior (left); External potential hump

V (x) =
∑12

s=0 cssech2(x − xs), cs = 10−2, xs = −10 + sh, h = 5/3,
s = 0, ..., 12 (right).
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Three-soliton configuration in mixed asymptotic regime
corresponding to real parts of eigenvalues of the Lax pair
Reζ1 = Reζ2 = −0.00321, Reζ3 = 0.00642

Figure: 5. Free potential behavior (left); External potential well

V (x) =
∑32

s=0 cssech2(x − xs), cs = −10−2, xs = −16 + sh, h = 1,
s = 0, ..., 32.
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Nine-soliton asymptotic regime: ξk = −45 + 9k ,
νk = 0.4625 + 0.0075(k − 1), µk = 0, δk = kπ,
k = 1, ..., 9, θk+1 = θk − π

10 , k = 1, ..., 8, θ1 = 9π
10

Calculated eigenvalues of the potentialfree Lax pair are

ζ1 = −0.005720 + 0.239562i
ζ2 = 0.005720 + 0.239562i
ζ3 = −0.001564 + 0.245551i
ζ4 = 0.001564 + 0.245551i
ζ5 = −0.005720 + 0.260438i

ζ6 = −2.939394× 10−19 + 0.250000i
ζ7 = −0.001564 + 0.254449i
ζ8 = 0.001564 + 0.254449i
ζ9 = 0.005720 + 0.260438i
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Nine-soliton configuration

Figure: 6. Free potential behavior (left); External potential well
V (x) = cs [tanh(2ν0x − yi)− tanh(2ν0x − yf)], cs = −0.004, yi = −69.5,
yf = 218.5 (right).
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Nine-soliton asymptotic regime: ξk = −40 + 8k ,
νk = 0.4625 + 0.0075(k − 1), µk = 0, δk = kπ,
k = 1, ..., 9, θk+1 = θk − π

10 , k = 1, ..., 8, θ1 = 9π
10

Calculated eigenvalues of the potentialfree Lax pair are

ζ1 = −0.011877 + 0.241165i
ζ2 = 0.011877 + 0.241165i
ζ3 = −0.011877 + 0.258835i
ζ4 = −0.006926 + 0.248312i
ζ5 = −0.006926 + 0.251688i

ζ6 = −8.679330× 10−20 + 0.250000i
ζ7 = 0.006926 + 0.248312i
ζ8 = 0.006926 + 0.251688i
ζ9 = 0.011877 + 0.258835i
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Nine-soliton configuration

Figure: 7. Free potential behavior (left); External potential well
V (x) = cs [tanh(2ν0x − yi)− tanh(2ν0x − yf)], cs = −0.004, yi = −40.5,
yf = 215.5 (right).
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Nine-soliton configuration

Figure: 8. External potential well
V (x) = cs [tanh(2ν0x − yi)− tanh(2ν0x − yf)], cs = −0.004: yi = −40.5,
yf = 151.5 (left); yi = −40.5, yf = 115.5 (right).
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Nine-soliton configuration

Figure: 9. External potential well
V (x) = cs [tanh(2ν0x − yi)− tanh(2ν0x − yf)], cs = −0.004: yi = −40.5,
yf = 151.5.
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Conclusions

The soliton interactions in adiabatic approximation have been
modeled by the CTC

It has been demonstrated that the CTC may be viewed as
universal model because it provides adequate description

for all types of asymptotic regimes of the soliton trains
for multisoliton trains – from 2 to 9 solitons
for both scalar and vector soliton trains

Using CTC we can predict the asymptotic regime of the
soliton train from its initial set of parameters

Using CTC we can describe the initial set of parameters for
which the soliton train will undergo given asymptotic regime
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