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Problem Formulation: Equations

CNLSE is system of nonlinearly coupled Schrödinger equations
(called the Gross-Pitaevskii or Manakov-type system):

iψt = βψxx +
[
α1|ψ|2 + (α1 + 2α2)|φ|2

]
ψ,

(1)
iφt = βφxx +

[
α1|φ|2 + (α1 + 2α2)|ψ|2

]
φ,

where:
β is the dispersion coefficient;
α1 describes the self-focusing of a signal for pulses in birefringent
media;
α2 (called cross-modulation parameter) governs the nonlinear
coupling between the equations. When α2 = 0, no nonlinear
coupling is present despite the fact that “cross-terms” proportional
to α1 appear in the equations. For α2 = 0, the solutions of the two
equations are identical, ψ ≡ φ, and equal to the solution of single
NLSE with nonlinearity coefficient α = 2α1.
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Problem Formulation: Equations

Now we concentrate on linearly coupled system of NLSE.
Obviously this system is Manakov type and the magnitude of linear
coupling generates breathing the solitons although noninteracting

iΨt = βΨxx + α1

[
|Ψ|2 + |Φ|2

]
Ψ− ΓΦ,

(2)
iΦt = βΦxx + α1

[
|Φ|2 + Ψ|2

]
Φ− ΓΨ,

with initial conditions

Ψ = ψ cos(Γt) + iφ sin(Γt), Φ = φ cos(Γt) + iψ sin(Γt), (3)

where φ and ψ are assumed to be sech-solutions of (1).
Γ = Γr + iΓi is the magnitude of linear coupling. Γr governs the
oscillations between states termed as breathing solitons, while Γi

describes the gain behavior of soliton solutions.
Hence (2) posses solutions, which are combinations of interacting
solitons oscillating with frequency Γr .
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Problem Formulation: Choice of Initial Conditions

These solutions are pulses whose modulation amplitude is of
general form (non-sech) and their polarization rotates with time.
This determines the choice of initial conditions for numerical
investigation of temporal evolution of interacting solitons. In the
present paper we concern ourselves with the soliton solutions which
are localized envelops on a propagating carrier wave.
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Problem Formulation: Choice of Initial Conditions

We assume that for each of the functions φ, ψ the initial condition
has the general type

ψ = Aψ(x + X − cψt) exp
{
i
[
nψt − 1

2cψ(x−X−cψt)+ δψ
]}

(4)
φ = Aφ(x + X − cφt) exp

{
i
[
nφt − 1

2cφ(x−X−cφt)+ δφ
]}
,

where cψ, cφ are the phase speeds and X ’s are the initial positions
of the centers of the solitons; nψ, nφ are the carrier frequencies for
the two components; δψ and δφ are the phases of the two
components. Note that the phase speed must be the same for the
two components ψ and φ. If they propagate with different phase
speeds, after some time the two components will be in two
different positions in space, and will no longer form a single
structure. For the envelopes (Aψ,Aφ),
θ ≡ arctan(max |φ|/max |ψ|) is a polarization angle.
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Problem Formulation: Choice of Initial Conditions

Generally the carrier frequencies for the two components nψ 6= nφ
– elliptic polarization. When nψ = nφ – circular polarization. If one
of them vanishes – linear polarization (sech soliton).
In general case the initial condition is solution of the following
system of nonlinear conjugated equations

A′′
ψ +

(
nψ + 1

4c2
ψ

)
Aψ +

[
α1A

2
ψ + (α1 + 2α2)A

2
φ

]
Aψ = 0

(5)
A′′
φ +

(
nφ + 1

4c2
φ

)
Aφ +

[
α1A

2
φ + (α1 + 2α2)A

2
ψ

]
Aφ = 0.

The system admits bifurcation solutions since the trivial solution
obviously is always present.
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Problem Formulation: Choice of Initial Conditions

For the linearly coupled initial conditions we have explicitly the
same conjugate bifurcation system but with trivial nonlinear
coupling, α2 = 0,

A′′
Ψ +

(
nΨ + 1

4c2
Ψ

)
AΨ + α1

(
A2

Ψ + A2
Φ

)
AΨ = 0

(6)
A′′

Φ +
(
nΦ + 1

4c2
Φ

)
AΦ + α1

(
A2

Φ + A2
Ψ

)
AΦ = 0.

Our aim is to understand better the influence of the initial
polarization on the particle-like behavior of the localized waves.
We call a localized wave a quasi-particle (QP) if it survives the
collision with other QPs (or some other kind of interactions)
without losing its identity.
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Initial Conditions

We solve the auxiliary conjugated system (5) or (6) with
asymptotic boundary conditions using Newton method and the
initial approximation of sought nontrivial solution is sech-function.
The final solution, however, is not obligatory sech-function. It is a
two-component polarized soliton solution.

Figure: 1. Amplitudes Aψ and Aφ for cl = −cr = 1, α1 = 0.75, α2 = 0.2.
Left:nψ = −0.68; middle: nψ = −0.55; right: nψ = −0.395.

M. D. Todorov Polarization Dynamics in CNLSE



Initial Conditions

Another dimension of complexity is introduced by the phases of the
different components. The initial difference in phases can have a
profound influence on the polarizations of the solitons after the
interaction. The relative shift of real and imaginary parts is what
matters in this case.

Figure: 2. Real and imaginary parts of the amplitudes from the case
shown in the middle panel of Figure 1 and the dependence on phase
angle.
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Problem Formulation: Conservation Laws

Define “mass”, M, (pseudo)momentum, P, and energy, E :

M
def
=

1

2β

∫ L2

−L1

(
|ψ|2 + |φ|2

)
dx , P

def
= −

∫ L2

−L1

I(ψψ̄x + φφ̄x)dx ,

E
def
=

∫ L2

−L1

Hdx , where (7)

H def
= β

(
|ψx |2 + |φx |2

)
− 1

2α1(|ψ|4 + |φ|4)
−(α1 + 2α2)

(
|φ|2|ψ|2

)
− 2Γ[<(ψ̄φ̄)]

is the Hamiltonian density of the system. Here −L1 and L2 are the
left end and the right end of the interval under consideration. For
the linear coupling case, α2 = 0 and Γ 6= 0 the functions ψ and φ
correspond to notations in (3). The following conservation/balance
laws hold, namely

dM

dt
= 0,

dP

dt
= H

∣∣
x=L2

−H
∣∣
x=−L1

,
dE

dt
= 0, (8)
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Numerical Method

To solve the main problem numerically, we use an implicit
conservative scheme in complex arithmetic

i
ψn+1

i − ψn
i

τ
=

β

2h2

(
ψn+1

i−1 − 2ψn+1
i + ψn+1

i+1 + ψn
i−1 − 2ψn

i + ψn
i+1

)
+
ψn+1

i + ψn
i

4

[
α1

(
|ψn+1

i |2 + |ψn
i |2

)
+ (α1 + 2α2)

(
|φn+1

i |2 + |φn
i |2

)]
− 1

2Γ
(
φn+1

i + φn
i

)
,

i
φn+1

i − φn
i

τ
=

β

2h2

(
φn+1

i−1 − 2φn+1
i + φn+1

i+1 + φn
i−1 − 2φn

i + φn
i+1

)
+
φn+1

i + φn
i

4

[
α1

(
|φn+1

i |2 + |φn
i |2

)
+ (α1 + 2α2)

(
|ψn+1

i |2 + |ψn
i |2

)]
− 1

2Γ
(
ψn+1

i + ψn
i

)
.
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Numerical Method: Conserved Properties

It is not only convergent (consistent and stable), but also
conserves mass and energy, i.e., there exist discrete analogs for (8),
which arise from the scheme.

Mn =
N−1∑
i=2

(
|ψn

i |2 + |φn
i |2

)
= const,

En =
N−1∑
i=2

−β
2h2

(
|ψ n

i+1 − ψ n
i |2 + |φ n

i+1 − φ n
i |2

)
+
α1

4

(
|ψn

i |4 + |φn
i |4

)
+ 1

2(α1 + 2α2)
(
|ψn

i |2|φn
i |2

)
− Γ<[φ̄n

i ψ
n
i ] = const,

for all n ≥ 0.

These values are kept constant during the time stepping. The
above scheme is of Crank-Nicolson type for the linear terms and
we employ internal iterations to achieve implicit approximation of
the nonlinear terms, i.e., we use its linearized implementation.

M. D. Todorov Polarization Dynamics in CNLSE



Circularly Polarized Solitons (θin = 45◦)

This is a special elliptic polarization with θin = 45◦. It can be
generated from the auxiliary bifurcation system. Because the
parametric space of the problem is too big to be explored in full,
we choose nlψ = nrψ = nlφ = nrφ = −1.5, cl = −cr = 1,

α1 = 0.75, Γ = 0.175 and focus on the effects of ~δ.

We have found that the phases of the components play an
essential role on the full energy of QPs. The magnitude of the
latter essentially depends on the choice of initial phase
difference (Figure 7);

The pseudomomentum is also conserved and it is trivial due
to the symmetry (Figure 6);
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Circularly Polarized Solitons (θin = 45◦)

The individual masses, however, breathe together with the
individual (rotational) polarizations. Their amplitude and
period do not influenced from the initial phase difference
(Figure 6);

The total mass is constant while the total polarization
oscillates and suffers a ’shock in polarization ’ when QPs enter
the collision. The polarization amplitude evidently depends on
the initial phase difference (Figures 8,9,10);

Due to the real linear coupling the polarization angle of QPs
can change independently of the collision.
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Initial Circular Polarizations: θ = 45◦, α2 = 0,
cl = −cr = 1, nψ = nφ = −1.5, Γ = 0.175

Figure: 3. δl = 0◦, δr = 0◦

Figure: 4. δl = 0◦, δr = 90◦

M. D. Todorov Polarization Dynamics in CNLSE



Initial Circular Polarizations: θ = 45◦, α2 = 0,
cl = −cr = 1, nψ = nφ = −1.5, Γ = 0.175

Figure: 5. δl = 0◦, δr = 180◦

Figure: 6. δl = 0◦, δr = 0◦; 90◦; 180◦, P = 10−3 ÷ 10−11

M. D. Todorov Polarization Dynamics in CNLSE



Initial Circular Polarizations: θ = 45◦, α2 = 0,
cl = −cr = 1, nψ = nφ = −1.5, Γ = 0.175

Figure: 7. Influence of the initial phase difference on the energy:
δl = 0◦, δr = 0◦ – E = −2.842;
δl = 0◦, δr = 90◦ – E = −4.15;
δl = 0◦, δr = 180◦ – E = −1.139
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Initial Circular Polarizations: θ = 45◦, α2 = 0,
cl = −cr = 1, nψ = nφ = −1.5, Γ = 0.175

Figure: 8. δl = 0◦, δr = 0◦

Figure: 9. δl = 0◦, δr = 90◦
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Initial Circular Polarizations: θ = 45◦, α2 = 0,
cl = −cr = 1, nψ = nφ = −1.5, Γ = 0.175

Figure: 10. δl = 0◦, δr = 180◦
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Elliptically Polarized Solitons (θin = 23◦44′)

We consider two solitons with equal initial elliptic polarizations.
The initial configuration is generated from the auxiliary bifurcation
system. Because the parametric space of the problem is too big to
be explored in full, we choose nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, cl = −cr = 1, α1 = 0.75, Γ = 0.175 and focus

on the effects of ~δ.
Because the results are qualitatively the same as in the previous
case of circular polarization we skip their discussion.
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Initial Elliptic Polarizations: θ = 23◦44′, α2 = 0,
cl = −cr = 1, nlψ = nrψ = −1.1, nlφ = nrφ = −1.5,
Γ = 0.175

Figure: 11. δl = 0◦, δr = 0◦

Figure: 12. δl = 0◦, δr = 90◦
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Initial Elliptic Polarizations: θ = 23◦44′, α2 = 0,
cl = −cr = 1, nlψ = nrψ = −1.1, nlφ = nrφ = −1.5,
Γ = 0.175

Figure: 13. δl = 0◦, δr = 135◦

Figure: 14. δl = 0◦, δr = 180◦
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Initial Elliptic Polarizations: θ = 23◦44′, α2 = 0,
cl = −cr = 1, nlψ = nrψ = −1.1, nlφ = nrφ = −1.5,
Γ = 0.175

Figure: 15. Influence of the initial phase difference on the total energy:
δl = 0◦, δr = 0◦ – E = −0.262;
δl = 0◦, δr = 90◦ – E = −0.821;
δl = 0◦, δr = 135◦ – E = −0.206;
δl = 0◦, δr = 180◦ – E = 0.640

M. D. Todorov Polarization Dynamics in CNLSE



Initial Elliptic Polarizations: θ = 23◦44′, α2 = 0,
cl = −cr = 1, nlψ = nrψ = −1.1, nlφ = nrφ = −1.5,
Γ = 0.175

Figure: 16. δl = 0◦, δr = 90◦, P = 10−3 ÷ 10−5
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Initial Elliptic Polarizations: θ = 23◦44′, α2 = 0,
cl = −cr = 1, nlψ = nrψ = −1.1, nlφ = nrφ = −1.5,
Γ = 0.175

Figure: 17. δl = 0◦, δr = 0◦

Figure: 18. δl = 0◦, δr = 90◦
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Initial Elliptic Polarizations: θ = 23◦44′, α2 = 0,
cl = −cr = 1, nlψ = nrψ = −1.1, nlφ = nrφ = −1.5,
Γ = 0.175

Figure: 19. δl = 0◦, δr = 135◦

Figure: 20. δl = 0◦, δr = 180◦
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Polarized Solitons with Different Polarization Angles
(θl in = 23◦44′, θr in = 25◦23′)

In this case the solitons start with different elliptic polarizations. It
is generated from the auxiliary bifurcation system. Because the
parametric space of the problem is too big to be explored in full,
we choose nlψ = nrψ = −1.1, nlφ = nrφ = −1.5, cl = 1, cr = 0.8,

α1 = 0.75, Γ = 0.175 and focus on the effects of ~δ.

We have found that the phases of the components play an
essential role on the full energy of QPs. The magnitude of the
latter essentially depends on the choice of initial phase
difference (Figure 30);

The pseudomomentum is also conserved and does not depend
on the initial phase difference. It is not trivial.
(Figure 24,25,26);
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Polarized Solitons with Different Polarization Angles
(θl in = 23◦44′, θr in = 25◦23′)

The individual masses, however, breathe together with the
individual (rotational) polarizations. Their amplitude and
period do not influenced from the initial phase difference
(Figure 24,25,26) and are conserved within one full period of
the breathing. The total mass is constant;

Both the individual and total polarizations breathe and suffers
a ’shock in polarization ’ when QPs enter the collision. The
polarization amplitude evidently depends on the initial phase
difference (Figures 27,28,29). The above quantities are
conserved within one full period of the breathing;

Due to the real linear coupling the polarization angle of QPs
can change independently of the collision.
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Overtake. Different Elliptic Polarizations: θl = 23◦44′,
θr = 25◦23′, α2 = 0, cl = 1, cr = 0.8, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Figure: 21. δl = 0◦, δr = 0◦

Figure: 22. δl = 0◦, δr = 90◦
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Overtake. Different Initial Elliptic Polarizations:
θl = 23◦44′, θr = 25◦23′, α2 = 0, cl = 1, cr = 0.8,
nlψ = nrψ = −1.1, nlφ = nrφ = −1.5, Γ = 0.175

Figure: 23. δl = 0◦, δr = 180◦

Figure: 24. δl = 0◦, δr = 0◦, P = 4.08÷ 4.05
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Overtake. Different Initial Elliptic Polarizations:
θl = 23◦44′, θr = 25◦23′, α2 = 0, cl = 1, cr = 0.8,
nlψ = nrψ = −1.1, nlφ = nrφ = −1.5, Γ = 0.175

Figure: 25. δl = 0◦, δr = 90◦, P = 4.08÷ 4.05

Figure: 26. δl = 0◦, δr = 180◦, P = 4.08÷ 4.05
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Overtake. Different Initial Elliptic Polarizations:
θl = 23◦44′, θr = 25◦23′, α2 = 0, cl = 1, cr = 0.8,
nlψ = nrψ = −1.1, nlφ = nrφ = −1.5, Γ = 0.175

Figure: 27. δl = 0◦, δr = 0◦

Figure: 28. δl = 0◦, δr = 90◦
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Overtake. Different Initial Elliptic Polarizations:
θl = 23◦44′, θr = 25◦23′, α2 = 0, cl = 1, cr = 0.8,
nlψ = nrψ = −1.1, nlφ = nrφ = −1.5, Γ = 0.175

Figure: 29. δl = 0◦, δr = 180◦
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Overtake. Different Initial Elliptic Polarizations:
θl = 23◦44′, θr = 25◦23′, α2 = 0, cl = 1, cr = 0.8,
nlψ = nrψ = −1.1, nlφ = nrφ = −1.5, Γ = 0.175

Figure: 30. Influence of the initial phase difference on the total energy:
δl = 0◦, δr = 0◦ – E = 0.0673;
δl = 0◦, δr = 90◦ – E = −0.976;
δl = 0◦, δr = 180◦ – E = −0.657
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