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Problem Formulation. Boussinesq Paradigm Equation

Consider the Boussinesq equation in two dimensions

utt = ∆(u − αu2 + β1utt − β2∆u) (1)

where w is the surface elevation, β1, β2 > 0 are two dispersion
coefficients and α is an amplitude parameter.
The initial conditions can be prepared by a single soliton
(computed numerically and semi-analytically) or as a superposition
of two solitons.
Possible ways to solve numerically the above problem are

by using a semi-implicit scheme

by using a fully implicit difference scheme

by using Fourier integral-transform method
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Fourier Integral-Transform Method

Instead of using a multigrid solver we can use a 2D Fourier
transform. Applying it to the original equation (1) we get

[1 + 4πβ1(ξ
2 + η2)]ûtt =− 4π2(ξ2 + η2)û

−16β2π
4(ξ2 + η2)2û + 4π2α(ξ2 + η2)N̂ (2)

where û = û(ξ, η, t) and N̂ := F [u2].
Solving the last ODE is very easy and requires very few operations
per time step for given N̂ but the lion’s share of the computational
resources are consumed by the computation of the convolution
integral that represents the Fourier transform of the nonlinear term
u2.
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Fourier Integral-Transform Method. Numerical
Implementation

We introduce an uniform grid in the Fourier space and discretize
the Fourier integral. Suppose that we know ûp, ûp−1,..., û0. Then
the next (p + 1)-st stage is computed from the following
three-stage difference scheme

[1 + 4πβ1(ξ
2
m + η2

n)]
ûp+1
mn − 2ûp

mn + ûp−1
mn

τ2

= [2π2(ξ2
m + η2

n) + 8β2π
4(ξ2

m + η2
n)

2][ûp+1
mn + ûp−1

mn ]

+ 4π2α(ξ2
m + η2

n)N̂
p
mn (3)

where N̂p
mn := DF [(up

kl)
2] is the DFT of u2. The problem is that

up
kl is not known. It has to be found from the inverse Fourier

transform of the known function ûp
mn, namely up

kl := F−1[ûp
mn].
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Fourier Integral-Transform Method. Numerical
Implementation

After computing the grid function on the grid in the configurational
space one inverses it at each collocation point and then takes the
square of it. From the obtained grid function one computes N̂p.
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Numerical Test with the 1D string equation and
D’Alembert’s formula

Let us consider the following Cauchy problem

utt = c2uxx , −∞ < x <∞, t > 0 (4)

u(x , 0) = f (x), ut(x , 0) = g(x) (5)

with exact solution u = 1
2 [f (x − ct) + f (x + ct)] + 1

2c

∫ x+ct
x−ct gdθ

The respective equation in the Fourier space looks like

ûtt = −c2p2û (6)

and the initial conditions

û = f̂ (p) ût = ĝ(p) (7)

with exact solution û = f̂ (p) cos cpt + ĝ(p)
cp sin cpt.

F−1[û] = u.
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Numerical Test with the 1D string equation and
D’Alembert’s formula

We solve by usual three-stage explicit scheme (6)-(7)

ûk+1 − 2ûk + ûk−1

τ2
= −c2p2ûk (8)

and set c = 1, f (x) = exp (−x2), g(x) = 2x exp (−x2). The
Fourier integral is approximated by Filon’s quadrature, which
seems to be generalized trapezoidal formula when ωh < 1. When
ωh > 1 the error ∼ O(Nω−3yxx).
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Comparison of the numerical solution with the D’Alembert
formula

Figure: 1.
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Right going single Gaussian pulse

Figure: 2.
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Left going single Gaussian pulse

Figure: 3.

M. D. Todorov Fourier Integral-Transform Method for the Wave Equations



Superposition and elastic interaction of two Gaussian
pulses

Figure: 4.
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D’Alembert solution with sech-like initial condition (10)

Figure: 5.
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Numerical Test with the Regularized Long Wave Equation

In this case the Boussinesq equation has the form

utt = (u − αu2 + βutt)xx (9)

and admits the following exact solution

u = −3

2

c2 − 1

α
sech2

x − ct

2c

√
c2 − 1

β

 (10)

Skipping the mechanical sense of this equation we transform it in
Fourier space together with the initial conditions which we build
based on the exact solution in the time moment t = 0. The
transformed equation

ûtt = −p2û + αp2N̂ − βp2ûtt (11)

is discretized by usual three-stage difference scheme and treat
following the algorithm described earlier.
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RLWE numerical result

Figure: 6. The inelastic interaction in RLWE near to the threshold of
nonlinear blow-up, cl = −cr = 1.5, α = −3, β = 1.

There is an excellent comparison with Fig.9 in Christov & Velarde,
Int. Journal of Bifurcation and Chaos, 4 (1994) 1095-1112, where
a difference method is used.
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RLWE numerical result

Figure: 7. The inelastic interaction in RLWE near to the threshold of
nonlinear blow-up, cl = −cr = 1.5, α = −3, β = 1.

There is an excellent comparison with Fig.9 in Christov & Velarde,
Int. Journal of Bifurcation and Chaos, 4 (1994) 1095-1112, where
a difference method is used.
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RLWE numerical result

Figure: 8. The inelastic interaction in RLWE for slightly supersonic
phase velocities, cl = −cr = 1.05, α = −3, β = 1.

See for comparison Fig.7 in Christov & Velarde, Int. Journal of
Bifurcation and Chaos, 4 (1994) 1095-1112

M. D. Todorov Fourier Integral-Transform Method for the Wave Equations



RLWE numerical result

Figure: 9. The inelastic interaction in RLWE for slightly supersonic
phase velocities, cl = −cr = 1.05, α = −3, β = 1.

See for comparison Fig.7 in Christov & Velarde, Int. Journal of
Bifurcation and Chaos, 4 (1994) 1095-1112
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RLWE numerical result

Figure: 10. The inelastic interaction in RLWE for moderate supersonic
phase velocities, cl = −cr = 2, α = −3, β = 1.

See for comparison Fig.12 in Christov & Velarde, Int. Journal of
Bifurcation and Chaos, 4 (1994) 1095-1112
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Thanks

Thank you for your kind attention !
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