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Idea of Adiabatic Approximation

The idea of the adiabatic approximation to the soliton interactions
(Karpman&Solov’ev (1981)) led to effective modeling of the
N-soliton trains of the perturbed scalar NLS eq.:

iut +
1

2
uxx + |u|2u(x , t) = iR[u]. (1)

By N-soliton train we mean a solution of the NLSE (1) with initial
condition

u(x , t = 0) =
N∑

k=1

uk(x , t = 0), (2)

uk(x , t)=2νkeiφk sechzk , zk =2νk(x−ξk(t)), ξk(t)=2µkt+ξk,0,

φk =
µk

νk
zk + δk(t), δk(t)=2(µ2

k + ν2
k )t + δk,0.

Here µk are the amplitudes, νk – the velocities, δk – the phase
shifts, ξk - the centers of solitons.
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Idea of Adiabatic Approximation

The adiabatic approximation holds if the soliton parameters satisfy
the restrictions

|νk − ν0| � ν0, |µk − µ0| � µ0, |νk − ν0||ξk+1,0 − ξk,0| � 1, (3)

where ν0 and µ0 are the average amplitude and velocity
respectively. In fact we have two different scales:

|νk − ν0| ' ε
1/2
0 , |µk − µ0| ' ε

1/2
0 , |ξk+1,0 − ξk,0| ' ε−1

0 .

In this approximation the dynamics of the N-soliton train is
described by a dynamical system for the 4N soliton parameters. In
our previous works we investigate it in presence of periodic and
polynomial potentials. Now, we are interested in what follow
perturbation(s) by external sech-potentials:

iR[u] ≡ V (x)u(x , t), V (x) =
∑

s

cssech2(2ν0x − ys). (4)

The latter allows us to realize the idea about localized potential
wells(depressions) and humps.
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Potential Perturbations

Figure: 1. Sketch of potential sech-like wells and humps used.
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Perturbed Vector Complex Toda Chain

In the present paper we generalize the above results to the
perturbed vector NLS

i~ut +
1

2
~uxx + (~u†, ~u)~u(x , t) = iR[~u]. (5)

The corresponding vector N-soliton train is determined by the
initial condition

~u(x , t = 0) =
N∑

k=1

~uk(x , t = 0), ~uk(x , t) = 2νke iφk sechzk~nk , (6)

and the amplitudes, the velocities, the phase shifts, and the centers
of solitons are as in Eq.(2). The phenomenology, however, is
enriched by introducing a constant polarization vectors ~nk that are
normalized by the conditions

(~n†k ,~nk) = 1,

n∑
s=1

arg~nk;s = 0.
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Generalized Complex Toda Chain and CNSE

More precisely after involving these vectors we derive a generalized
version of the CTC (GCTC) model, which allows to have in mind
the polarization effects in the N-soliton train of the vector NLS.
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Perturbed Vector Complex Toda Chain Model. Initial
Conditions

The corresponding model is known as the perturbed CTC model
which can be written down in the form

dλk

dt
= −4ν0

(
eQk+1−Qk − eQk−Qk−1

)
+ Mk + iNk ,

dQk

dt
= −4ν0λk + 2i(µ0 + iν0)Ξk − iXk ,

(7)

where λk = µk + iνk and Xk = 2µkΞk + Dk and

Qk = −2ν0ξk + k ln 4ν2
0 − i(δk + δ0 + kπ − 2µ0ξk),

ν0 =
1

N

N∑
s=1

νs , µ0 =
1

N

N∑
s=1

µs , δ0 =
1

N

N∑
s=1

δs .
(8)
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Variational approach and PCTC

We use the variational approach (Anderson and Lisak (1986)) and
derive the GCTC model. Like the (unperturbed) CTC, GCTC is a
finite dimensional completely integrable model allowing Lax
representation.
The Lagrangian of the vector NLS perturbed by external potential
is:

L[~u] =

∫ ∞

−∞
dt

i

2

[
(~u†, ~ut)− (~u†t , ~u)

]
− H,

H[~u] =

∫ ∞

−∞
dx

[
−1

2
(~u†x , ~ux) +

1

2
(~u†, ~u)2 − (~u†, ~u)V (x)

]
.

(9)

Then the Lagrange equations of motion:

d

dt

δL
δ~u†t

− δL
δ~u†

= 0, (10)

coincide with the vector NLS with external potential V (x).
M. D. Todorov Multisoliton Interaction of Perturbed Manakov System



Variational approach and PCTC

Next we insert ~u(x , t) =
∑N

k=1 ~uk(x , t) (see eq. (6)) and integrate
over x neglecting all terms of order ε and higher.
Thus after long calculations we obtain:

L =
N∑

k=1

Lk +
N∑

k=1

∑
n=k±1

L̃k,n, Lk,n = 16ν3
0e−∆k,n(Rk,n + R∗k,n),

Rk,n = e i(δ̃n−δ̃k )(~n†k~nn), δ̃k = δk − 2µ0ξk ,

∆k,n = 2sk,nν0(ξk − ξn) � 1, sk,k+1 = −1, sk,k−1 = 1.
(11)

where

Lk = −2iνk

(
(~n†k,t ,~nk)− (~n†k ,~nk,t)

)
+ 8µkνk

dξk

dt

− 4νk
dδk

dt
+ . . .

(12)
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Variational approach and PCTC

The equations of motion are given by:

d

dt

δL
δpk,t

− δL
δpk

= 0, (13)

where pk = {δk , ξk , µk , νk ,~n†k}.

∂νk

∂t
=N[uk ],

∂µk

∂t
=M[uk ],

∂ξk

∂t
=− 1

2νk
Imh(ζ) + Ξ[uk ],

∂δk

∂t
=2µk

∂ξk

∂t
+ Reh(ζ) + D[uk ],

(14)
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Variational approach and PCTC

where h(ζ) = −2ζ2 and

Nk [u]=
1

2
Re

∫ ∞

−∞
R[uk ] sech zk e−iφk dzk ,

Mk [u]=
1

2
Im

∫ ∞

−∞
R[uk ] tanh zk sech zk e−iφk dzk ,

Ξk [u]=
1

4
Re

∫ ∞

−∞
R[uk ]zk sech zk e−iφk dzk ,

Dk [u]=
1

2νk
Im

∫ ∞

−∞
R[uk ](1−zk tanh zk) sech zk e−iφk dzk ,

M. D. Todorov Multisoliton Interaction of Perturbed Manakov System



Variational approach and PCTC

The corresponding system is a generalization of CTC:

dλk

dt
=−4ν0

(
eQk+1−Qk (~n†k+1,~nk)− eQk−Qk−1(~n†k ,~nk−1)

)
+Mk +iNk ,

dQk

dt
=−4ν0λk + 2i(µ0 + iν0)Ξk−iXk ,

d~nk

dt
= O(ε),

(15)
where again λk = µk + iνk and the other variables are given by
(8). The explicit form of Mk , Nk , Ξk and Dk is given by

Mk =
∑

s

2csνkP(∆k,s), Nk = 0,

Ξk = 0, Dk =
∑

s

csR(∆k,s).

(16)

where ∆k,s = 2ν0ξk − ys and the functions P(∆) and R(∆) are
known explicitly.
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Integrals

Figure: 2. The integrals N(∆), R(∆), and P(∆).
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Variational approach and PCTC

Now we have additional equations describing the evolution of the
polarization vectors. But note, that their evolution is slow, and in
addition the products (~n†k+1,~nk) multiply the exponents eQk+1−Qk

which are also of the order of ε. Since we are keeping only terms of
the order of ε we can replace (~n†k+1,~nk) by their initial values

(~n†k+1,~nk)
∣∣∣
t=0

= m2
0ke2iφ0k , k = 1, . . . ,N − 1 (17)
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Effects of the polarization vectors on the soliton interaction

We formulate a condition on ~ns that is compatible with the
adiabatic approximation. We also formulate the conditions on the
initial vector soliton parameters responsible for the different
asymptotic regimes.
The CTC is completely integrable model; it allows Lax
representation Lt = [A.L], where:

L =
N∑

s=1

(bsEss + as(Es,s+1 + Es+1,s)) ,

A =
N∑

s=1

(as(Es,s+1 − Es+1,s)) ,

(18)

where as = exp((Qs+1 −Qs)/2), bs = µs,t + iνs,t and the matrices
Eks are determined by (Eks)pj = δkpδsj . The eigenvalues of L are
integrals of motion and determine the asymptotic velocities.
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Effects of the polarization vectors on the soliton interaction

The GCTC is also a completely integrable model because it allows
Lax representation L̃t = [Ã.L̃], where:

L̃ =
N∑

s=1

(
b̃sEss + ãs(Es,s+1 + Es+1,s)

)
,

Ã =
N∑

s=1

(ãs(Es,s+1 − Es+1,s)) ,

(19)

where ãs = m2
0ke2iφ0k as , bs = µs,t + iνs,t . Like for the scalar case,

the eigenvalues of L̃ are integrals of motion. If we denote by
ζs = κs + iηs (resp. ζ̃s = κ̃ + i η̃s) the set of eigenvalues of L (resp.
L̃) then their real parts κs (resp. κ̃s) determine the asymptotic
velocities for the soliton train described by CTC (resp. GCTC).
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RTC and CTC. Asymptotic regimes

While for the RTC the set of eigenvalues ζs of the Lax matrix are
all real, for the CTC they generically take complex values, e.g.,
ζs = κs + iηs .
Hence, the only possible asymptotic behavior in the RTC is an
asymptotically separating, free motion of the solitons. In opposite,
for the CTC the real parts κs ≡ Reζs of eigenvalues of the Lax
matrix ζs determines the asymptotic velocity of the sth soliton.

M. D. Todorov Multisoliton Interaction of Perturbed Manakov System



Effects of the polarization vectors on the soliton interaction

Thus, starting from the set of initial soliton parameters we can
calculate L|t=0 (resp. L̃|t=0), evaluate the real parts of their
eigenvalues and thus determine the asymptotic regime of the
soliton train.

Regime (i) κk 6= κj (κ̃k 6= κ̃j) for k 6= j – asymptotically
separating, free solitons;

Regime (ii) κ1 = κ2 = · · · = κN = 0
(κ̃1 = κ̃2 = · · · = κ̃N = 0) – a “bound state;”

Regime (iii) group of particles move with the same mean
asymptotic velocity and the rest of the particles will
have free asymptotic motion.

Varying only the polarization vectors one can change the
asymptotic regime of the soliton train.
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Effects of the external potentials on the GCTC. Numeric
checks vs Variational approach

The predictions and validity of the CTC and GCTC are compared
and verified with the numerical solutions of the corresponding
CNSE using fully explicit difference scheme of Crank-Nicolson type,
which conserves the energy, the mass, and the pseudomomentum.
The scheme is implemented in a complex arithmetics. Such
comparison is conducted for all dynamical regimes considered.

First we study the soliton interaction of the pure Manakov
model (without perturbations, V (x) ≡ 0) and with vanishing
cross-modulation α2 = 0;

2-soliton configurations and transitions between different
asymptotic regimes;

3-soliton configurations and transitions between different
asymptotic regimes;

2- and 3-soliton configurations and transitions under the effect
of well- and hump-like external potential.
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Two-soliton configurations and transitions between
different asymptotic regimes: free asymptotic regime

Figure: 3. ∆ν = |ν2 − ν1| < νcr = 0.01786.
νcr = 2

√
2 cos(θ1 − θ2)ν0 exp (−ν0r0), µk0 = 0.1, ν10 = 0.49, ν20 = 0.51,

ξ10,20 = ±4, δ10 = 0, δ20 = π + 2µ0r0, θ10 = 2π/10, θ20 = θ10 − π/10.
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Three-soliton configurations in mixed asymptotic regimes:
two-bound state + free soliton

Figure: 4. ∆ν = 0.01 < νcr. νcr = 2
√

2 cos(θ1 − θ2)ν0 exp (−ν0r0),
µk0 = 0.03, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0, ξ10,30 = ±8, δ10 = 0,
δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10, θk0 = θk−1,0 − π/10, k = 2, 3.
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Three-soliton configurations and transitions between
different asymptotic regimes: free asymptotic regime

Figure: 5. ∆ν = 0.01 < νcr. νcr = 2
√

2 cos(θ1 − θ2)ν0 exp (−ν0r0),
µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0, ξ10,30 = ±8, δk0 = 0,
θ10 = 3π/10, θk0 = θk−1,0 − π/10, k = 2, 3.
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Three-soliton configurations and transitions in mixed
regimes – two-soliton bound state + free soliton

Figure: 6. ∆ν = 0.01 < νcr = 0.02526.
νcr = 2

√
2 cos(θ1 − θ2)ν0 exp (−ν0r0), µk0 = 0.03, ν20 = 0.5,

ν10,30 = ν20 ±∆ν, ξ20 = 0, ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0,
θ10 = 3π/10, θk0 = θk−1,0 − π/10, k = 2, 3.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Figure: 7. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, two potential wells y1 = −12, y2 = 4,
cs = 0.001.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Figure: 8. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential hump at y = 12, cs = 0.01.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Figure: 9. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential hump at y = 12, cs = 0.01.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Figure: 10. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, two potential humps at y = ±12,
cs = 0.1.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Figure: 11. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential well at y = −12, cs = 0.01.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Figure: 12. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential well at y = 4, cs = 0.01.

M. D. Todorov Multisoliton Interaction of Perturbed Manakov System



Effects of the external potentials on the GCTC – 3-soliton
configurations

Figure: 13. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential well at y = 4, cs = 0.01.

M. D. Todorov Multisoliton Interaction of Perturbed Manakov System



Effects of the external potentials on the GCTC. Numeric
checks vs Variational approach

Figure: 14. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, two potential wells at y = ±12, cs = 0.01.
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Effects of the external potentials on the GCTC – 2-soliton
configurations

Figure: 15. ∆ν = 0, µk0 = 0.005, νk0 = 0.5, ξ10,20 = ±4, ξ10,20 = ±4,
δ10 = 0, ∆20 = 2µ0r0, θ10 = 3π/10, θ20 = θ10 − π/10, three potential
humps at y = ±15, y = 0, cs = 0.0485.
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