
Wave Equations and Quasi-Particle Concept of
Dynamics of Solitary Waves: Integrability vs.

Consistency, Nonlinearity vs. Dispersion, Adiabatic
Approximation

Michail D. Todorov

Faculty of Applied Mathematics and Informatics
Technical University of Sofia, Bulgaria

Mathematics Seminar, Dept. of Mathematics,
Southeastern Louisiana University at Hammond, April

12, 2013

M. D. Todorov Wave Equations and Quasi-Particle Concept of Dynamics



Outline

Problem Formulation. Integrability and Nonintegrability
Conservation Laws and Boussinesq Paradigm
Choice or Generation of Initial Conditions
Quasi-Particle Dynamics and Polarization
Variational Approach. Adiabatic Approximation. Particle
Dynamics
Numerics
Some Results and Discussion

M. D. Todorov Wave Equations and Quasi-Particle Concept of Dynamics



Problem Formulation: Equations

CNLSE is system of nonlinearly coupled Schrödinger equations
(called the Gross-Pitaevskii or Manakov-type system):

iψt = βψxx +
[
α1|ψ|2 + (α1 + 2α2)|φ|2

]
ψ(+Γφ),

(1)
iφt = βφxx +

[
α1|φ|2 + (α1 + 2α2)|ψ|2

]
φ(+Γψ),

where:
β is the dispersion coefficient;
α1 describes the self-focusing of a signal for pulses in birefringent
media;
Γ = Γr + iΓi is the magnitude of linear coupling. Γr governs the
oscillations between states termed as breathing solitons, while Γi

describes the gain behavior of soliton solutions.
α2 (called cross-modulation parameter) governs the nonlinear
coupling between the equations.
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Problem Formulation: Equations

When α2 = 0, no nonlinear coupling is present despite the fact that
“cross-terms” proportional to α1 appear in the equations. For
α2 = 0, the solutions of the two equations are identical, ψ ≡ φ,
and equal to the solution of single NLSE with nonlinearity
coefficient α = 2α1.
For Γ = 0, CNSE is alternately called the Gross-Pitaevskii equation
or an equation of Manakov type. It was derived independently by
Gross and Pitaevskii to describe the behavior of Bose-Einstein
condensates as well as optic pulse propagation. It was solved
analytically for the case α2 = 0, β = 1

2 by Manakov via Inverse
Scattering Transform who generalized an earlier result by Zakharov
& Shabat for the scalar cubic NLSE (i.e. Eq.(2-ψ) with
ϕ(x , t) = 0). Recently, Chow, Nakkeeran, and Malomed studied
periodic waves in optic fibers using a version of CNSE with Γ 6= 0.
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Integrability and Nonintegrability

The single NLSE has the form

iψt + βψxx + α|ψ|2ψ = 0 (2)

As far as the applications in nonlinear optics are concerned, the
above equation describes the single-mode wave propagation in a
fiber. Depending on the sign of (2) admits single and multiple
sech-solutions (bright solitons), as well as tanh-profile, or dark
soliton solutions. In this paper we concentrate on the case of bright
solitons.
A dynamical system with infinite number of conservation laws
(integrals) is called integrable. NSE is an integrable dynamical
system. CNSE is a nonintegrable generalisation of NSE.
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Problem Formulation: Conservation Laws

Define “mass”, M, (pseudo)momentum, P, and energy, E :

M
def
=

1

2β

∫ L2

−L1

(
|ψ|2 + |φ|2

)
dx , P

def
= −

∫ L2

−L1

I(ψψ̄x + φφ̄x)dx ,

E
def
=

∫ L2

−L1

Hdx , where (3)

H def
= β

(
|ψx |2 + |φx |2

)
− 1

2α1(|ψ|4 + |φ|4)
−(α1 + 2α2)

(
|φ|2|ψ|2

)
− 2Γ[<(ψ̄φ̄)]

is the Hamiltonian density of the system. Here −L1 and L2 are the
left end and the right end of the interval under consideration.
The following conservation/balance laws hold, namely

dM

dt
= 0,

dP

dt
= H

∣∣
x=L2

−H
∣∣
x=−L1

,
dE

dt
= 0, (4)
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Boussinesq Paradigm. Quasi-particles Concept

Boussinesq ’s equation (BE) was the first model for the
propagation of surface waves over shallow inviscid layer which
contains dispersion. Boussinesq found an analytical solution of his
equation and thus proved that the balance between the steepening
effect of the nonlinearity and the flattening effect of the dispersion
maintains the shape of the wave. This discovery can be properly
termed ‘Boussinesq Paradigm’. Apart from the significance for the
shallow water flows, this paradigm is very important for
understanding the particle-like behavior of localized waves which
behavior was discovered in the 1960ies (the so-called ‘collision
property’), and the localized waves were called solitons (Zabusky &
Kruskal). The localized waves which can retain their identity during
interaction appear to be a rather pertinent model for particles,
especially if some mechanical properties are conserved by the
governing equations (such as mass, energy, momentum). For this
reason they are called quasi-particles.
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Boussinesq Paradigm. Quasi-particles Concept

The equation derived by Boussinesq (1871) referred as “Original
Boussinesq Equation”

∂2h

∂t2
=

∂2

∂x2

[
(gH)h +

3g

2
h2 +

gH3

3

∂2h

∂x2

]
(5)

is fully integrable but incorrect in the sence of Hadamard due to the
positive sign of the foutrh spatial derivative.
Including the effect of surface tension as was done by Korteweg &
de Vries one arrives so called Proper Boussinesq Equation

∂2u

∂t2
=

∂2

∂x2

[
u − αu2 + β

∂2u

∂x2

]
(6)

which is correct in the sense of Hadamard (well-posed as IVP) only
when β < 0.
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Boussinesq Paradigm. Quasi-particles Concept

The ill-posedness of OBE can be removed if the Boussinesq
assumption that ∂

∂t ≈
∂
∂x is used in “reverse”:

∂2u

∂t2
=

∂2

∂x2

[
u − αu2 + β

∂2u

∂t2

]
. (7)

This equation is called “improper” or RLWE. All versions of the
Boussinesq equations considered here possess solitary-wave
solutions of sech type. For example, for the BE the solution reads

u = −3

2

c2 − 1

α
sech2

x − ct

2

√
c2 − 1

β
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Boussinesq Paradigm. Quasi-particles Concept

The overwhelming majority of the analytical and numerical results
so far are for one spatial dimension, while in multidimension much
less is possible to achieve analytically, and almost nothing is known
about the unsteady solutions, especially when the Boussinesq
equations contain different dispersions and nonlinearities are
involved. An exception is the case of so called KPE, which has
fourth derivative only in one spatial directions, while in the other
direction, the highest order is second.

Boussinesq Paradigm Equation (BPE)

utt = ∆[u − αu2 + β1utt − β2∆u] (8)

where u is the surface elevation, β1, β1 > 0 are two dispersion
coefficients, α is an amplitude parameter.
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Boussinesq Paradigm. Quasi-particles Concept

Cubic-Quintic Boussinesq Paradigm Equation (CQBPE)

utt = ∆[u − α(u3 − σu5) + β1utt − β2∆u] (9)

where u again is the surface elevation, β1, β1 > 0 are two
dispersion coefficients. The parameter σ accounts for the relative
importance of the quintic nonlinearity term. Then energy law reads

dE

dt
= 0 with

E =
1

2

∫ ∞

−∞

∫ ∞

−∞
[(∇ut)

2+u2−1

2
u4+

σ

3
u6+β1u

2+β2(∇u)2]dxdy .

Unlike the BPE with quadratic nonlinearity, when the amplitude
increases, the quintic term in CQBPE for reasonably large σ will
dominate and will make the energy functional positive, which limits
the increase of the amplitude. All this means that no blow-up can
be expected for CQBPE when σ > 3

16 .
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Boussinesq Paradigm. (Energy)-Consistent Boussinesq
System

This a further generalization of the Boussinesq Paradigm equation.
The following system was derived rigorously from the main
Boussinesq assumption

∂χ

∂t
= −β∇ · χ∇f −∆f +

β

6
∆2f − β

2

∂2∆f

∂t2
, (10a)

∂f

∂t
= −β

2
(∇f )2 − χ, (10b)
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Boussinesq Paradigm. (Energy)-Consistent Boussinesq
System

Upon multiplying the left-hand side of (10a) by the right-hand side
of Eq. (10b) and the right-hand side of Eq. (10a) by the left-hand
side of Eq. (10b), adding the results and integrating over the
surface region D under consideration one gets the following energy
balance law

E =
1

2

∫
D

[
χ2 + (1 + βχ)(∇f )2 +

β

6
(∆f )2 +

β

2
(∇ft)

2

]
dx

dE

dt
=

∮
∂D

[
(1 + βχ)ft

∂f

∂n
+
β

2
ft
∂ftt
∂n

+
β

2
ft
∂∆f

∂n
− β

2
∆f

∂ft
∂n

]
ds,

(11)

which allows us to call the Eqs. (10) ‘Energy Consistent Boussinesq
Paradigm.’
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Problem Formulation: Choice of Initial Conditions

We concern ourselves with the soliton solutions whose modulation
amplitude is of general form (non-sech) and which are localized
envelops on a propagating carrier wave. This allows us to play
various scenario of initial polarization. Unfortunately in sech-case
the initial polarization can be only linear. Then we assume that for
each of the functions φ, ψ the initial condition is of the form of a
single propagating soliton, namely{
ψ(x , t)
φ(x , t)

}
=

{
Aψ

Aφ

}
sech [b(x−X−ct)] exp

{
i
[

c

2β
(x−X )−nt

]}
.

b2 =
1

β

(
n +

c2

4β

)
, A = b

√
2β

α1
, uc =

2nβ

c
, (12)

where X is the spatial position (center of soliton), c is the phase
speed, n is the carrier frequency, and b−1 – a measure of the
support of the localized wave.
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Problem Formulation: Choice of Initial Conditions

We assume that for each of the functions φ, ψ the initial condition
has the general type

ψ = Aψ(x + X − cψt) exp
{
i
[
nψt − 1

2cψ(x−X−cψt)+ δψ
]}
(13)

φ = Aφ(x + X − cφt) exp
{
i
[
nφt − 1

2cφ(x−X−cφt)+ δφ
]}
,

where cψ, cφ are the phase speeds and X ’s are the initial positions
of the centers of the solitons; nψ, nφ are the carrier frequencies for
the two components; δψ and δφ are the phases of the two
components. Note that the phase speed must be the same for the
two components ψ and φ. If they propagate with different phase
speeds, after some time the two components will be in two different
positions in space, and will no longer form a single structure. For
the envelopes (Aψ,Aφ), θ ≡ arctan(max |φ|/max |ψ|) is a
polarization angle.
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Problem Formulation: Generation of Initial Conditions

Generally the carrier frequencies for the two components nψ 6= nφ –
elliptic polarization. When nψ = nφ – circular polarization. If one of
them vanishes – linear polarization (sech soliton, θ = 0; 90◦).
In general case the initial condition is solution of the following
system of nonlinear conjugated equations

A′′
ψ +

(
nψ + 1

4c2
ψ

)
Aψ +

[
α1A

2
ψ + (α1 + 2α2)A

2
φ

]
Aψ = 0

(14)
A′′
φ +

(
nφ + 1

4c2
φ

)
Aφ +

[
α1A

2
φ + (α1 + 2α2)A

2
ψ

]
Aφ = 0.

The system admits bifurcation solutions since the trivial solution
obviously is always present.
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Initial Conditions and Initial Polarization

We solve the auxiliary conjugated system (14) with asymptotic
boundary conditions using Newton method and the initial
approximation of sought nontrivial solution is sech-function. The
final solution, however, is not obligatory sech-function. It is a
two-component polarized soliton solution.

Рис.: 1. Amplitudes Aψ and Aφ for cl = −cr = 1, α1 = 0.75, α2 = 0.2.
Left:nψ = −0.68; middle: nψ = −0.55; right: nψ = −0.395.
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Initial Conditions and Initial Phase Difference

Another dimension of complexity is introduced by the phases of the
different components. The initial difference in phases can have a
profound influence on the polarizations of the solitons after the
interaction and the magnitude of the full energy. The relative shift
of real and imaginary parts is what matters in this case.

Рис.: 2. Real and imaginary parts of the amplitudes from the case shown
in the middle panel of Figure 1 and the dependence on phase angle.
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Problem Formulation: Initial Conditions

After completing the initial conditions our aim is to understand
better the influence of the initial polarization and initial phase
difference on the particle-like behavior of the localized waves. We
call a localized wave a quasi-particle (QP) if it survives the collision
with other QPs (or some other kind of interactions) without losing
its identity.
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Idea of Adiabatic Approximation. CTC

The idea of the adiabatic approximation to the soliton interactions
(Karpman&Solov’ev (1981)) led to effective modeling of the
N-soliton trains of the perturbed both scalar NLS eq. and vector
NLSE eq.:

i~ut +
1

2
~uxx + (~u†, ~u)~u(x , t) = iR[~u]. (15)

The corresponding vector N-soliton train is determined by the
initial condition

~u(x , t =0)=
N∑

k=1

~uk(x , t =0), ~uk(x , t) = 2νke iφk sechzk~nk , (16)

and the amplitudes, the velocities, the phase shifts, and the centers
of solitons are

uk(x , t)=2νkeiφk sechzk , zk =2νk(x−ξk(t)), ξk(t)=2µkt+ξk,0,

φk =
µk

νk
zk + δk(t), δk(t)=2(µ2

k + ν2
k )t + δk,0.
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Idea of Adiabatic Approximation. CTC

Here µk are the amplitudes, νk – the velocities, δk – the phase
shifts, ξk - the centers of solitons, β = 1

2 , α1 = 1, α2 = 0. So, this
approach is applicable only for the (perturbed) Manakov system
The phenomenology, however, is enriched by introducing a constant
polarization vectors ~nk that are normalized by the conditions

(~n†k ,~nk) = 1,
n∑

s=1

arg~nk;s = 0.
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Idea of Adiabatic Approximation

The adiabatic approximation holds if the soliton parameters satisfy
the restrictions

|νk − ν0| � ν0, |µk −µ0| � µ0, |νk − ν0||ξk+1,0− ξk,0| � 1, (17)

where ν0 and µ0 are the average amplitude and velocity
respectively. In fact we have two different scales:

|νk − ν0| ' ε
1/2
0 , |µk − µ0| ' ε

1/2
0 , |ξk+1,0 − ξk,0| ' ε−1

0 .

In this approximation the dynamics of the N-soliton train is
described by a dynamical system for the 4N soliton parameters. We
are interested in what follow perturbation(s) by external
sech-potentials:

iR[u] ≡ V (x)u(x , t), V (x) =
∑

s

cssech2(2ν0x − ys). (18)

The latter allows us to realize the idea about localized potential
wells(depressions) and humps.
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Potential Perturbations

Рис.: 3. Sketch of potential sech-like wells and humps used.
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Perturbed Vector Complex Toda Chain Model. Initial
Conditions

We use the variational approach (Anderson and Lisak (1986)) and
derive the GCTC model. GCTC is a finite dimensional completely
integrable model allowing Lax representation. The resulting
equations can be written down in the form

dλk

dt
= −4ν0

(
eQk+1−Qk − eQk−Qk−1

)
+ Mk + iNk ,

dQk

dt
= −4ν0λk + 2i(µ0 + iν0)Ξk − iXk ,

(19)

where λk = µk + iνk and Xk = 2µkΞk + Dk and

Qk = −2ν0ξk + k ln 4ν2
0 − i(δk + δ0 + kπ − 2µ0ξk),

ν0 =
1

N

N∑
s=1

νs , µ0 =
1

N

N∑
s=1

µs , δ0 =
1

N

N∑
s=1

δs .
(20)
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Effects of the polarization vectors on the soliton interaction

The GCTC is also a completely integrable model because it allows
Lax representation L̃t = [Ã.L̃], where:

L̃ =
N∑

s=1

(
b̃sEss + ãs(Es,s+1 + Es+1,s)

)
,

Ã =
N∑

s=1

(ãs(Es,s+1 − Es+1,s)) ,

(21)

where ãs = m2
0ke2iφ0k as , bs = µs,t + iνs,t . Like for the scalar case,

the eigenvalues of L̃ are integrals of motion. If we denote by
ζs = κs + iηs (resp. ζ̃s = κ̃+ i η̃s) the set of eigenvalues of L (resp.
L̃) then their real parts κs (resp. κ̃s) determine the asymptotic
velocities for the soliton train described by CTC (resp. GCTC).
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RTC and CTC. Asymptotic regimes

While for the RTC the set of eigenvalues ζs of the Lax matrix are
all real, for the CTC they generically take complex values, e.g.,
ζs = κs + iηs .
Hence, the only possible asymptotic behavior in the RTC is an
asymptotically separating, free motion of the solitons. In opposite,
for the CTC the real parts κs ≡ Reζs of eigenvalues of the Lax
matrix ζs determines the asymptotic velocity of the sth soliton.
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Effects of the polarization vectors on the soliton interaction

Thus, starting from the set of initial soliton parameters we can
calculate L|t=0 (resp. L̃|t=0), evaluate the real parts of their
eigenvalues and thus determine the asymptotic regime of the
soliton train.

Regime (i) κk 6= κj (κ̃k 6= κ̃j) for k 6= j – asymptotically
separating, free solitons;

Regime (ii) κ1 = κ2 = · · · = κN = 0
(κ̃1 = κ̃2 = · · · = κ̃N = 0) – a “bound state;"

Regime (iii) group of particles move with the same mean
asymptotic velocity and the rest of the particles will
have free asymptotic motion.

Varying only the polarization vectors one can change the
asymptotic regime of the soliton train.
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Effects of the external potentials on the GCTC. Numeric
checks vs Variational approach

The predictions and validity of the CTC and GCTC are compared
and verified with the numerical solutions of the corresponding
CNSE using fully explicit difference scheme of Crank-Nicolson type,
which conserves the energy, the mass, and the pseudomomentum.
Such comparison is conducted for all dynamical regimes considered.

First we study the soliton interaction of the pure Manakov
model (without perturbations, V (x) ≡ 0) and with vanishing
cross-modulation α2 = 0;
2-soliton configurations and transitions between different
asymptotic regimes;
3-soliton configurations and transitions between different
asymptotic regimes;
2- and 3-soliton configurations and transitions under the effect
of well- and hump-like external potential.
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Two-soliton configurations and transitions between different
asymptotic regimes: free asymptotic regime

Рис.: 4. ∆ν = |ν2 − ν1| < νcr = 0.01786.
νcr = 2

√
2 cos(θ1 − θ2)ν0 exp (−ν0r0), µk0 = 0.1, ν10 = 0.49, ν20 = 0.51,

ξ10,20 = ±4, δ10 = 0, δ20 = π + 2µ0r0, θ10 = 2π/10, θ20 = θ10 − π/10.
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Three-soliton configurations in mixed asymptotic regimes:
two-bound state + free soliton

Рис.: 5. ∆ν = 0.01 < νcr. νcr = 2
√

2 cos(θ1 − θ2)ν0 exp (−ν0r0),
µk0 = 0.03, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0, ξ10,30 = ±8, δ10 = 0,
δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10, θk0 = θk−1,0 − π/10, k = 2, 3.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Рис.: 6. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential hump at y = 12, cs = 0.01.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Рис.: 7. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential hump at y = 12, cs = 0.01.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Рис.: 8. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential well at y = −12, cs = 0.01.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Рис.: 9. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential well at y = 4, cs = 0.01.
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Effects of the external potentials on the GCTC – 3-soliton
configurations

Рис.: 10. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, one potential well at y = 4, cs = 0.01.
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Effects of the external potentials on the GCTC. Numeric
checks vs Variational approach

Рис.: 11. ∆ν = 0.01, µk0 = 0, ν20 = 0.5, ν10,30 = ν20 ±∆ν, ξ20 = 0,
ξ10,30 = ±8, δ10 = 0, δ20,30 = ±π/2 + 2µ0r0, θ10 = 3π/10,
θk0 = θk−1,0 − π/10, k = 2, 3, two potential wells at y = ±12, cs = 0.01.
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Effects of the external potentials on the GCTC – 2-soliton
configurations

Рис.: 12. ∆ν = 0, µk0 = 0.005, νk0 = 0.5, ξ10,20 = ±4, ξ10,20 = ±4,
δ10 = 0, ∆20 = 2µ0r0, θ10 = 3π/10, θ20 = θ10 − π/10, three potential
humps at y = ±15, y = 0, cs = 0.0485.
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Linearly Coupled Problem Formulation: Equations and Initial
Conditions

For the linearly coupled system of NLSE the magnitude of linear
coupling Γr generates breathing the solitons although
noninteracting The initial conditions must be

Ψ = ψ cos(Γt) + iφ sin(Γt), Φ = φ cos(Γt) + iψ sin(Γt), (22)

where φ and ψ are assumed to be sech-solutions of (1) for α2 = 0.
Hence (1) posses solutions, which are combinations of interacting
solitons oscillating with frequency Γr and their motion gives rise to
the so-called rotational polarization.
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Problem Formulation: Conservation Laws

In all considered cases we found that a conservation of the total
polarization is present. Only for the linearly CNLSE (α2 = 0) the
total polarizations breathe with an amplitude evidently depending
on the initial phase difference but is conserved within one full
period of the breathing.

δr − δl θi
l θi

r θi
l + θi

r θf
l θf

r θf
l + θf

r

45◦ 45◦ 45◦ 90◦ 33◦48′ 56◦12′ 90◦

90◦ 45◦ 45◦ 90◦ 24◦06′ 65◦54′ 90◦

0◦ 20◦ 20◦ 40◦ 20◦00′ 20◦00′ 40◦

90◦ 20◦ 20◦ 40◦ 28◦48′ 2◦02′ 30◦50′

0◦ 36◦ 36◦ 72◦ 36◦00′ 36◦00′ 72◦

90◦ 36◦ 36◦ 72◦ 53◦00′ 13◦20′ 66◦20′

0◦ 10◦ 80◦ 90◦ 21◦05′ 68◦54′ 89◦59′

90◦ 10◦ 80◦ 90◦ 9◦27′ 80◦30′ 89◦57′
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Numerical Method

To solve the main problem numerically, we use an implicit
conservative scheme in complex arithmetic.

i
ψn+1

i − ψn
i

τ
=

β

2h2

(
ψn+1

i−1 − 2ψn+1
i + ψn+1

i+1 + ψn
i−1 − 2ψn

i + ψn
i+1

)
+
ψn+1

i + ψn
i

4

[
α1

(
|ψn+1

i |2 + |ψn
i |2

)
+ (α1 + 2α2)

(
|φn+1

i |2 + |φn
i |2

)]
− 1

2Γ
(
φn+1

i + φn
i

)
,

i
φn+1

i − φn
i

τ
=

β

2h2

(
φn+1

i−1 − 2φn+1
i + φn+1

i+1 + φn
i−1 − 2φn

i + φn
i+1

)
+
φn+1

i + φn
i

4

[
α1

(
|φn+1

i |2 + |φn
i |2

)
+ (α1 + 2α2)

(
|ψn+1

i |2 + |ψn
i |2

)]
− 1

2Γ
(
ψn+1

i + ψn
i

)
.
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Numerical Method: Internal Iterations

i
ψn+1,k+1

i − ψn
i

τ
=

β

2h2

(
ψn+1,k+1

i−1 − 2ψn+1,k+1
i + ψn+1,k+1

i+1

+ ψn
i−1 − 2ψn

i + ψn
i+1

)
+
ψn+1,k

i + ψn
i

4

[
α1

(
|ψn+1,k+1

i ||ψn+1,k
i |+ |ψn

i |2
)

+(α1 + 2α2)
(
|φn+1,k+1

i ||φn+1,k
i |+ |φn

i |2
)]

i
φn+1,k+1

i − φn
i

τ
=

β

2h2

(
φn+1,k+1

i−1 − 2φn+1,k+1
i + φn+1,k+1

i+1

+ φn
i−1 − 2φn

i + φn
i+1

)
+
φn+1,k

i + φn
i

4

[
α1

(
|φn+1,k+1

i ||φn+1,k
i |+ |φn

i |2
)

+(α1 + 2α2)
(
|ψn+1,k+1

i ||ψn+1,k
i |+ |ψn

i |2
)]
.
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Numerical Method: Conservation Properties

It is not only convergent (consistent and stable), but also conserves
mass and energy, i.e., there exist discrete analogs for (4), which
arise from the scheme.

Mn =
N−1∑
i=2

(
|ψn

i |2 + |φn
i |2

)
= const,

En =
N−1∑
i=2

−β
2h2

(
|ψ n

i+1 − ψ n
i |2 + |φ n

i+1 − φ n
i |2

)
+
α1

4

(
|ψn

i |4 + |φn
i |4

)
+ 1

2(α1 + 2α2)
(
|ψn

i |2|φn
i |2

)
− Γ<[φ̄n

i ψ
n
i ] = const,

for all n ≥ 0.

These values are kept constant during the time stepping. The
above scheme is of Crank-Nicolson type for the linear terms and we
employ internal iterations to achieve implicit approximation of the
nonlinear terms, i.e., we use its linearized implementation.
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Results and Discussion: Initial Circular Polarizations of 45◦,
α2 = 0

Рис.: 13. δl = 0◦, δr = 0◦
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Results and Discussion: Initial Circular Polarizations of 45◦,
α2 = 0

Рис.: 14. δl = 0◦, δr = 45◦
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Results and Discussion: Initial Circular Polarizations of 45◦,
α2 = 0

—When both of QPs have zero phases (Fig. 13), the interaction
perfectly follows the analytical Manakov two-soliton solution.
—The surprise comes in Fig. 14 where is presented an interaction of
two QPs, the right one of which has a nonzero phase δr = 45◦.
After the interaction, the two QPs become different Manakov
solitons than the original two that entered the collision. The
outgoing QPs have polarizations 33◦48′ and 56◦12′. Something
that can be called a ‘shock in polarization’ takes place. All the
solutions are perfectly smooth, but because the property called
polarization cannot be defined in the cross-section of interaction
and for this reason, it appears as undergoing a shock.
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Results and Discussion: Initial Circular Polarizations of 45◦,
α2 = 0

Here is to be mentioned that when rescaled the moduli of ψ and φ
from Fig. 14 perfectly match each other which means that the
resulting solitons have circular polarization (see left panel of Fig. 15
below). The Manakov solution is not unique. There exists a class of
Manakov solution and in the place of interaction becomes a
bifurcation between them.
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Results and Discussion: Initial Circular Polarization and
Nonuniqueness of the Manakov Solution

Рис.: 15. Circular polarization (left); Elliptic Polarization (right).
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Equal Elliptic Initial Polarizations of 50◦08′ for α2 = 2

Рис.: 16. δl = 0◦, δr = 0◦

Рис.: 17. δl = 0◦, δr = 180◦
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Equal Elliptic Initial Polarizations of 50◦08′ for α2 = 2

Рис.: 18. δl = 0◦, δr = 130◦

Рис.: 19. δl = 0◦, δr = 135◦

Рис.: 20. δl = 0◦, δr = 140◦
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Equal Elliptic Initial Polarizations of 50◦08′ for α2 = 2.

We choose nlψ = nrψ = −1.5, nlφ = nrφ = −1.1, cl = −cr = 1,
α1 = 0.75, and focus on the effects of α2 and ~δ.
One sees that the desynchronisations of the phases leads in the
final stage to a superposition of two one-soliton solutions but with
different polarizations from the initial polarization. Yet, for
δr = 130◦ ÷ 140◦ one of the QPs loses its energy contributing it to
the other QP during the collision and then virtually disappears: kind
of energy trapping (Figs.18, 19, 20).
For δr = 180◦ another interesting effect is seen, when the right
outgoing QP is circularly polarized (Fig. 17).
All these interactions are accompanied by changes of phase speeds.
The total polarization exhibits some kind of conservation.
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Strong Nonlinear Interaction: α2 = 10

Рис.: 21. α2 = 10, cl = 1, cr = −0.5.

M. D. Todorov Wave Equations and Quasi-Particle Concept of Dynamics



Strong Nonlinear Interaction: α2 = 10

Two new solitons are born after the collision.
The kinetic energies of the newly created solitons correspond
their phase speeds and masses, but the internal energy is very
different for the different QP.
the total energy of the QPs is radically different from the total
energy of the initial wave profile. The differences are so drastic
that the sum of QPs energies can even become negative. This
means that the energy was carried away by the radiation.
The predominant part of the energy is concentrated in the left
and right forerunners because of the kinetic energies of the
latter are very large. This is due to the fact that the
forerunners propagate with very large phase speeds, and span
large portions of the region.
All four QPs have elliptic polarizations.
Energy transformation is a specific trait of the coupled system
considered here.
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Рис.: 22. δl = 0◦, δr = 0◦

Рис.: 23. δl = 0◦, δr = 90◦
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Рис.: 24. Influence of the initial phase difference on the total energy:
δl = 0◦, δr = 0◦ – E = −0.262;
δl = 0◦, δr = 90◦ – E = −0.821;
δl = 0◦, δr = 135◦ – E = −0.206;
δl = 0◦, δr = 180◦ – E = 0.640
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Рис.: 25. δl = 0◦, δr = 90◦, P = 10−3 ÷ 10−5
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

Рис.: 26. δl = 0◦, δr = 0◦

Рис.: 27. δl = 0◦, δr = 90◦
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Linear Coupling: Initial Linear Polarizations: θl = 0◦,
θr = 90◦, α2 = 0, cl = 1.5, cr = 0.6, Γ = 0.175 + 0.005i
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Рис.: 28. δl = 0◦, δr = 90◦
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

We have found that the phases of the components play an
essential role on the full energy of QPs. The magnitude of the
latter essentially depends on the choice of initial phase
difference (Figure 24);
The pseudomomentum is also conserved and it is trivial due to
the symmetry (Figure 25);
The individual masses, however, breathe together with the
individual (rotational) polarizations. Their amplitude and
period do not influenced from the initial phase difference
(Figure 25);
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Linear Coupling: Initial Elliptic Polarizations: θ = 23◦44′,
α2 = 0, cl = −cr = 1, nlψ = nrψ = −1.1,
nlφ = nrφ = −1.5, Γ = 0.175

The total mass is constant while the total polarization
oscillates and suffers a ’shock in polarization ’ when QPs enter
the collision. The polarization amplitude evidently depends on
the initial phase difference (Figures 26,27);
Due to the real linear coupling the polarization angle of QPs
can change independently of the collision.
Complex parameter of linear coupling: Along with the
oscillations of the energy and masses the (negative) energy
decreases very fast, while the masses Mψ and Mφ increase all
of them oscillating. The pseudomomentum P increases
without appreciable oscillation (Figure 28).
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