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Outline of the Problem

• Boussinesq’s equation (BE) was the first model for the
propagation of surface waves over shallow inviscid fluid
layer. He found an analytical solution of his equation and
thus proved that the balance between the steepening effect
of the nonlinearity and the flattening effect of the disper-
sion maintains the shape of the wave. This discovery can
be properly termed ‘Boussinesq Paradigm.’

• Apart from the significance for the shallow water flows,
this paradigm is very important for understanding the
particle-like behavior of nonlinear localized waves. As it
should have been expected, most of the physical systems
are not fully integrable (even in one spatial dimension)
and only a numerical approach can lead to unearthing the
pertinent physical mechanisms of the interactions.
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Outline of the Problem

• The overwhelming majority of the analytical and numer-
ical results obtained so far are for one spatial dimension,
while in multidimension, much less is possible to achieve
analytically, and almost nothing is known about the un-
steady solutions that involve interactions, especially when
the full-fledged Boussinesq equations are involved.

As shown in Christov(2001), the consistent implementa-
tion of the Boussinesq method yields the following Gen-
eralized Wave Equation (GWE) for f = φ(x, y, z = 0; t):

ftt + 2β∇f · ∇ft + βft∆f

+ 3β2

2
(∇f)2∆f −∆f + β

6
∆2f − β

2
(∆f)tt = 0. (1)

with Hamiltonian density

H = 1
2

[
f 2

t + (∇f)2 − 1
4
β2(∇f)4 + 1

6
β(∆f)2 + 1

2
β(∇ft)

2
]
.
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Outline of the Problem

• Eq. (1) is the most rigorous amplitude equation that can
be derived for the surface waves over an inviscid shallow
layer, when the length of the wave is considered large in
comparison with the depth of the layer. It was derived
only in 2001. Besides it a plethora of different inconsistent
Boussinesq equations are still vigorously investigated. The
most popular are the versions that contain a quadratic
nonlinearity which are useful from the paradigmatic point
of view.
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Outline of the Problem

• Unfortunately, Boussinesq did some additional unneces-
sary assumptions, which rendered his equation incorrect
in the sense of Hadamard, when the dispersion is positive.
We term the original model the ‘Boussinesq’s Boussinesq
Equation’ (BBE):

utt = (u− αu2 + βuxx)xx, β < 0. (2)

During the years, it was ‘improved’ in a number of works.
The mere change of the incorrect sign of the fourth deriva-
tive in BBE yields the so-called ‘good’ or ‘proper’ Boussi-
nesq equation (BE).
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Outline of the Problem

A different approach to removing the incorrectness is by chang-
ing the spatial fourth derivative to a mixed fourth derivative,
which resulted into an equation know nowadays as the Regular-
ized Long Wave Equation (RLWE) or Benjamin–Bona–Mahony
equation (BBME):

utt = (u− αu2 + βutt)xx. (3)

In fact, the mixed derivative occurs naturally in Boussinesq
derivation (see Eq. (1)), and was changed by Boussinesq to a
fourth spatial derivative under an assumption that ∂t ≈ c∂x,
which is currently known as the ‘Linear Impedance Relation’
(or LIA). The LIA has produced innumerable instances of un-
physical results.
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Problem Formulation: Equations

Consider the equation when the velocity potential and surface
elevation do not depend on the coordinate y. Having in mind
that f is the velocity potential on the bottom of the layer we
introduce a vertical velocity u = fx and an auxiliary function q .
Then we obtain so-called Dispersive Wave System is a progenitor
of the different 1d Boussinesq equations:

ut +
α

2
(u2)x =qxx,

(4)
qt + αuqx =u− β2uxx + β1utt,

where:

β1 and β2 are two dispersion coefficients, β1 = 3β2 = β;

α = β is an amplitude parameter;
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Problem Formulation: Boundary Condi-
tions

The boundary conditions are

u|x=−L1,L2 = 0 qx|x=−L1,L2 = 0.

When the interval [−L1, L2] is finite they provide the conserva-
tion of the total energy.
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Problem Formulation: Choice of Initial
Conditions

The initial condition is a superposition of two solitary waves
traveling in opposite directions with a phase velocities cl and cr

u(x, t = 0) =
a sgn(c)

|c|−1
2

+ cosh2[b(x−X − ct)]

where a = c2−1
α

, b =
√

c2−1
2(β1c2−β2)

.

The sech-like solutions exit in two domains – subcritical (sub-
sonic): 0 < c < 1/

√
3 and supercritical (supersonic): c > 1. The

physicaly relevant are only supercritical modes because the sub-
critical do not admit long waves for small β and are out of our
interest.
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Boussinesq Paradigm Equation

If ft is replaced by fx in the quadratic nonlinear term one arrives
at

utt = (u +
3β

2
u2 +

β

2
utt −

β

6
uxx)xx (5)

which was called “Boussinesq Paradigm Equation” (BPE). Note
that it is not the equation derived by Boussinesq himself. The
above simplification, however, destroys the Galilean invariance
of the system.
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Problem Formulation: Conservation Laws

Define “mass”, M , (pseudo)momentum, P , and (pseudo)energy,
E:

M
def
=

∫ L2

−L1

udx, P
def
=

∫ L2

−L1

(uqx − β
2
utux)dx,

E
def
= 1

2

∫ L2

−L1

(
u2 + q2

x + β
2
u3 + β

2
u2

t + β
6
u2

x

)
dx,

Here−L1 and L2 are the left end and the right end of the interval
under consideration.

The following conservation/balance laws hold, namely

dM

dt
= 0,

dP

dt
= −β

2
u2

x

∣∣∣x=L2

x=−L1

,
dE

dt
= 0, (6)
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Numerical Method

To solve the main problem numerically, we use a strictly con-
servative implicit staggered scheme, which is inevitably nonlin-
ear

q
n+1/2
i − q

n−1/2
i

τ
=

un+1
i + un−1

i

2
− α

2h
(q

n+1/2
i+1 − q

n+1/2
i−1 )(un+1

i + un−1
i )

+ β1

τ2 (u
n+1
i − 2un

i + un−1
i )− β2

h2 (u
n+1
i+1 − 2un+1

i + un+1
i−1 ),

un+1
i − un

i

τ
=

q
n+1/2
i+1 − 2q

n+1/2
i + q

n+1/2
i−1

h2

− α
2h2

[
(un+1

i+1 )2 − 2(un+1
i )2 + (un+1

i−1 )2
]
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Numerical Method. Quasilinearization
and Inner Iterations

We construct a conservative scheme for the Galilean invariant
case treated here. We introduce a regular mesh in the interval
[−L1, L2], xi = −L1+(i−1)h, h = (L1+L2)/(N−1), where N is
the total number of grid points. We use a simplest linearization
combined with an internal iteration (referred to by the composite
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superscript k). It appears to be robust enough and economical.

un+1,k
i − un

i

τ
=

q
n+1/2,k
i+1 − 2q

n+1/2,k
i + q

n+1/2,k
i−1

h2

− β

8h

[
(un+1,k−1

i+1 )2 − (un+1,k−1
i−1 )2 + (un

i+1)
2 − (un

i−1)
2
]

q
n+1/2,k
i − q

n−1/2
i

τ
= − β

8h

(
q

n+1/2,k−1
i+1 −q

n+1/2,k−1
i−1 +q

n−1/2
i+1 −q

n−1/2
i−1

)
× (un+1,k

i + un−1
i )

− β

12h2

[
(un+1,k

i+1 − 2un+1,k
i + un+1,k

i−1 ) + (un−1
i+1 − 2un−1

i + un−1
i−1 )

]
+

β

2

un+1,k
i − 2un

i + un−1
i

τ 2
+

un+1,k
i + un−1

i

2
.
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Numerical Method. Quasilinearization
and Inner Iterations

The inner iterations start from the functions obtained at the
previous time stage un+1,0

i = u0
i and q

n+1/2,0
i = qn

i and are ter-
minated at certain k = K when

max |un+1,K
i i− un,K−1

i | ≤ 10−13 max |un+1,K
i |

The value 10−13 is selected to be large enough in comparison
with the round-off error. In general, the number of iterations K
(in our calculations we keep them around six to eight) depends
on the size of time increment.

The linearized scheme has inextricably coupled five-diagonal banded
matrix.
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Numerical Method

We prove that the above approximation secures the conser-
vation of energy on difference level for arbitrary potential U(u),
namely the difference approximations of the mass and energy are
conserved by the difference scheme in the sense that Mn+1 = Mn

and En+1/2 = En−1/2.
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Some Results

Using a strongly implicit difference scheme with internal iterations
allows us to follow the evolution of the solution at very long times.
The system is stable even for 2.500.000 points of spatial resolution.
We focus on the dynamical behavior of traveling localized solutions
developing from critical initial data. The main solitary waves appear
virtually non-deformed from the interaction, but additional oscilla-
tions are excited at the trailing edge of each one of them. We extract
the perturbations and track their evolution for very long times when
they tend to adopt a self-similar shape: their amplitudes decrease
with the time while the length scales increase. We test a hypothesis
about the dependence on time of the amplitude and the support of
Airy-function shaped coherent structures which gives a very good
quantitative agreement with the numerically obtained solutions.

We consider the nonlinear case cl = 0.22, cr = −1.2. The interac-
tion is virtually ellastic and nosignificant phase shift occurs. In the
place of collision residual signals like wriggles appear and they trail
the two main humps.
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Airy function

The Airy function is defined by the improper integral

Ai(x) =
1
π

∫ ∞

0
cos( t3

3 + xt)dt.

It is oscillatory in the negative part of x and decays exponentially
in the positive part of x. The asymptotic behavior in the negative
direction is

Ai(−x) ∼
sin(2

3x3/2 + π
4 )

√
πx1/4 .
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Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 1: Short-times evolution. Forming of accompanying excita-
tions.
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Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 2: Middle-times evolution.
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Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 3: The evolution of the left excitation (shifted and scaled).

22



Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 4: The right left-going soliton with its trail. Middle-times
evolution.
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Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 5: The left right-going soliton with its trail. Middle-times
evolution.
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Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 6: Long-times evolution.

25



Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 7: The left right-going soliton with its trail. Very long-times
evolution.
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Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 8: The right left-going soliton with its trail. Long-times
evolution.

27



Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 9: Very long-times evolution.
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Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 10: The right left-going soliton with its trail. Very long-
times evolution.

29



Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 11: Graphic comparison of the trail for different times
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Head-on collision. cl = 0.22, cr = −1.2,
β1 = 3, β2 = 1, α = −3, τ = 0.05,
h = 0.1, M = −5.02002, E = 3.584

Figure 12: Graphic comparison of the trails with the Airy function.
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