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1. Problem Formulation

Consider the Boussinesq equation in two spatial dimensions (so called Boussinesq
Paradigm Equation)

utt = ∆(u− αu2 + β1utt − β2∆u) (1)

where u = u(x, y, t) is the surface elevation, t is the time, β1, β2 > 0 are two dispersion
coefficients and α is an amplitude parameter. The initial conditions can be prepared
by a single soliton (computed numerically and semi-analytically) or as a superposition
of two solitons (see, for example [2], [1], [3] and [4]). The possible ways to solve
numerically the above problem can be summarized in three groups: (i) by using a
semi-implicit difference scheme; (ii) by using a fully implicit difference scheme; (iii)
by using pseudospectral methods. In this paper we focus our attentions to the last
ones.

2. Fourier Integral-Transform Method

Instead of using a multigrid solver (see, for example [5]) we can use a 2D Fourier
transform. Applying it to the original equation (1) we get a second order Ordinary
Differential Equation (ODE) with respect the time in the configurational space

[1 + 4πβ1(ξ2 + η2)]ûtt

= −4π2(ξ2 + η2)
[
1 + 4β2π

2(ξ2 + η2)
]
û + 4π2α(ξ2 + η2)N̂ (2)

where û(ξ, η, t) := F [u] and N̂(ξ, η, t) := F [u2]. Solving the last ODE is straightfor-
ward and requires very few operations per time step for given N̂ but the lion’s share of
the computational resources are consumed by the computation of the contribution of
the nonlinear term. An implicit scheme would require inverting the matrix that results
from the discrete approximation of the convolution integral representing the Fourier
transform of the nonlinear term u2. The concept of the pseudospectral method is to
use inverse Fourier transform to represent the sought function in the configurational
space and to compute the square there, and then to “return” to the spectral space
via the Fourier transform. The straightforward application of the pseudo-spectral
method leads to an inherently explicit scheme, and in many case the latter us fully
enough. Yet, for computations at very large times, one needs a fully conservative
energy-conserving scheme. The latter is the object of the present note. We use the
concept of “internal iterations” as introduced in [6].



3. Numerical Implementation of the Pseudo-Spectral
Method

We introduce a uniform grid (ξm, ηn) in the Fourier space and discretize the Fourier
integral. Suppose that we know ûk, ûk−1,..., û0. Then the next (n + 1)-st time stage
is computed from the following three-stage difference scheme

[1 + 4πβ1(ξ2
m + η2

n)]
ûk,l+1

mn − 2ûk
mn + ûk−1

mn

τ2

= −2π2(ξ2
m + η2

n)[1 + 4β2π
2(ξ2

m + η2
n)](ûk,l+1

mn + ûk−1
mn )

+
4
3
π2α(ξ2

m + η2
n)DF

[
(D−1

F [ûk,l
mn])2 +D−1

F [ûk,l
mn]D−1

F [ûk−1
mn ] + (D−1

F [ûk−1
mn ])2

]
, (3)

where τ is the time step, and DF [·] denotes the discrete Fourier transform, and D−1
F [·]

is the inverse, respectively. The concept of internal iterations requires that at each
time stage the linear scheme Eq. (3) starts with uk,l

mn = uk
mn, l = 0 and is repeated

with increasing the number l until convergence is reached for some l + 1 = L. Then
it is set up that uk+1

mn := uk,L
mn. Then, following [6], we show that the scheme is fully

nonlinear and fully implicit and conserves the energy within the tolerance level set
for the convergence of the internal iterations (can be chosen close the the round-
off error of the computer). Note that the inverse Fourier transform gives a discrete
function uk

ij := D−1
F [ûk

mn], where i and j are the indices of a specific grid point in the
configurational space.

4. Numerical Tests and Validation

We treat two 1D wave equations. In order to approximate the Fourier integrals we
use specialized Filon’s quadrature [8] on a uniform mesh

∫ x∞

−x∞
u(x)eiξxdx ≈

(
1
iξ

+
1− e−iξh

ξ2h

)
vM −

(
1
iξ

+
e−iξh − 1

ξ2h

)
v0

+
4

ξ2h
sin2 ξh

2

M−1∑
m=1

vm,

with v ≡ u(x)eiξx, spatial step h and “actual” infinities [−x∞, x∞].
The advantage of above quadrature consists in both – for ξh ≤ 1 it becomes a gen-
eralized trapezoidal formula with O(h2) error and when ξh > 1 the order of error is
as O(Mξ−3uxx) [7], [9]. Having in mind the localized nature of the sought solutions
it is obvious that limx→±∞ uxx = 0 and the decay of the quadrature error for ξ À 1
and given x∞ in the problems in question is obeyed.

4.1. Cauchy problem for 1D string equation. Let us consider the well-known
Cauchy problem

utt = c2uxx, c = const > 0, −∞ < x < ∞, t > 0 (4)
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u(x, 0) = f(x), ut(x, 0) = g(x) (5)

with exact solution given by D’Alembert’s formula

u(x, t) =
1
2
[f(x− ct) + f(x + ct)] +

1
2c

∫ x+ct

x−ct

gdθ.

The image of the problem (4)-(5) in the configurational space (again Cauchy problem
with respect an ODE with algebraic right hand side) reads

ûtt = −c2ξ2û, û(ξ, 0) = f̂(ξ) ût(ξ, 0) = ĝ(ξ) (6)

and exact solution û(ξ, t) = f̂(ξ) cos cξt + ĝ(ξ)
cξ sin cξt where F−1[û] = u(x, t).

Following the idea in (3), we build a standard three-stage explicit difference scheme
for (6)

ûk+1
m − 2ûk

m + ûk−1
m

τ2
= −c2ξ2

2
(ûk+1

m + ûk−1
m ) (7)

setting the phase velocity c = 1, and (i) f(x) = e−(x−X)2 , g(x) = 2(x−X)e−(x−X)2 ,
X stands for the initial position of the center of the solitary wave; (ii) the functions
f(x) and g(x) in the initial conditions are sech-like (see the next subsection). Let us
note that the scheme is stable, when ch/τ ≤ 1.

4.2. Regularized Long Wave Equation. If β1 = 0 the Boussinesq equation
reduces to the so-called Regularized Long Wave Equation (RLWE)

utt = (u− αu2 + βutt)xx (8)

and possesses the following exact solitary-wave solution (see [6]):

w = −3
2

c2 − 1
α

sech2

(
x− ct

2c

√
c2 − 1

β

)
. (9)

Here c is the phase velocity, α is the parameter of the nonlinearity, and β is the
dispersion parameter. For the mechanical meaning of Eq. (8) we refer the reader to
[6]. To begin the time stepping, we set

u(x, 0) = w(x, 0) and u(x, τ) = wt(x, 0)τ + w(x, 0) (10)

and transform the latter to spectral space, thus providing the two initial conditions
for the 1D version of the scheme (3).

5. Results and Discussion

We show and discuss two groups of results concerning the 1D linear string equa-
tion and the 1D nonlinear RLWE. Figure 1 demonstrates the excellent comparison
between the D’Alembert solution (dashed lines) and the numerical solution by the
pseudospectral method (solid lines). Two running waves with Gaussian shape start
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Figure 1: Comparison of the numerical solution with the D’Alembert formula.

from the coordinate origin X = 0 and go unchanged to the left and to the right with
phase velocities cl = −cr = 1. The conclusion is that the linear wave equations can
be discretized and solved numerically in the spectral space and only after the solu-
tion is obtained at each time stage, the inverse Fourier transformation can be used
to restore the solution in the configuration space. As rule, the mapped differential
equations are simpler compared to the original ones.
In Figure 2 the wave shapes are the same but the initial condition is a superposition
of two running waves starting from different positions −Xl = Xr = 3.5 again with
phase velocities cl = −cr = 1 which collide between them elastically.
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Figure 2: Superposition and elastic interaction of two Gaussian pulses.

The second part of investigation concerns 1D nonlinear dispersive generalized wave
equations using RLWE as a featuring example. In the following figures the obtained
numerical solutions with the described here algorithm are presented. To test the
reliability of the method we compare the obtained results with these obtained by a
finite difference method in [6].
In Figures 3 and 4 the head-on collisions for supercritical phase speeds that are still
below the threshold of the blow-up are presented. The first figure presents a case
where the nonlinearity is weaker, while in the second of these figures, the nonlinearity
is considerable. In both cases, the solitons retain their individualities after the collision
and no significant radiation is observed despite the fact that RLWE is not a fully
integrable case. The only sign of inelasticity is the phase shift experienced by the
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colliding waves. For the sake of saving space it is not presented here.
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Figure 3: The inelastic interaction in RLWE for slightly supercritical phase velocities,
cl = −cr = 1.05, α = −3, β = 1.
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Figure 4: The interaction in RLWE near to the threshold of nonlinear blow-up, cl = −cr =
1.5, α = −3, β = 1.

In the end, we present in Figure 5 a case known to lead to a blow-up of the solution.
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Figure 5: The blow-up in RLWE for large supercritical phase velocities, cl = −cr = 2,
α = −3, β = 1.

In all considered cases an excellent comparison with [6] is observed.

6. Conclusion

We have demonstrated that the pseudospectral methods and in particular Fourier
transform can be efficient both for numerical treatment of linear and nonlinear wave
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equations. For the 2D and 3D equations one needs to apply 2D and 3D Fourier
transforms and to follow the procedures described above.
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