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Motivation

• The several variants of Boussinesq equation (BE) model surface waves in shallow
fluid layer. One important feature of BE is the balance between the nonlinearity
and dispersion, which leads to solutions of type of permanent waves (solitons).

J. V. Boussinesq, Théorie des ondes et des remous qui se propagent le long d’un canal

rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses

sensiblement pareilles de la surface au fond, Journal de Mathématiques Pures et Appliquées 17

(1872) 55–108.

• The accurate derivation of the Boussinesq system combined with an
approximation, that reduces the full model to a single equation, leads to
the Boussinesq Paradigm Equation (BPE)

utt = ∆ [u− F (u) + β1utt − β2∆u] , F (u) := αu2,

where u is the surface elevation, β1 > 0, β2 > 0 – dispersion coefficients,
α > 0 – amplitude parameter, β2 = α = 1 without loosing of generality.

C. I. Christov, An energy-consistent Galilean-invariant dispersive shallow-water model, Wave

Motion 34 (2001) 161–174.

6th Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, Albena, June 26–July 1, 2014 - p. 2/33



• 2D BPE admits stationary translating soliton solutions, which can be constructed
using either finite differences, perturbation technique, or Galerkin spectral
method:

J. Choudhury, C.I. Christov, 2D solitary waves of Boussinesq equation. APS Conference

Proceedings 755 (2005), 85–90.

C. I. Christov, Numerical implementation of the asymptotic boundary conditions for steadily

propagating 2D solitons of Boussinesq type equations, Math. Comp. Simulat. 82 (2012) ,

1079–1092.

C. I. Christov, J. Choudhury, Perturbation solution for the 2D shallow-water waves, Mech. Res.

Commun. 38 (2011) 274–281.

C.I. Christov, M.T. Todorov, M.A. Christou, Perturbation solution for the 2D shallow-water

waves. AIP Conference Proceedings 1404 (2011), 49–56.

M.A. Christou, C.I. Christov, Fourier-Galerkin method for 2D solitons of Boussinesq equation,

Math. Comput. Simul. 74 (2007) 82–92.

• Results about the time evolution and structural stability of the initial data,
obtained using the perturbation technique, are presented in

A. Chertock, C. I. Christov, A. Kurganov, Central-upwind schemes for the Boussinesq paradigm

equation. Computational Science and High Performance Computing IV, NNFM, 113, 267–281

(2011).
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C.I. Christov, N. Kolkovska, D. Vasileva, On the numerical simulation of unsteady solutions for

the 2D Boussinesq paradigm equation, Lecture Notes Computer Science 6046 (2011), 386–394.

C.I. Christov, N. Kolkovska, D. Vasileva, Numerical investigation of unsteady solutions for the

2D Boussinesq paradigm equation, 5th Annual Meeting of the Bulgarian Section of SIAM,

BGSIAM’10 Proceedings (2011), 11–16.

M. Dimova, D. Vasileva, Comparison of two numerical approaches to Boussinesq paradigm

equation, Lecture Notes Computer Science 8236 (2013), 255–262.

using different numerical methods. All results are in good agreement and show
that the 2D localized soliton solutions are not stable – they either disperse in
the form of ring-waves or blow-up (depending on the parameters).

• We continued the investigations using a moving frame coordinate system. It
allows us to keep the localized structure in the center of the coordinate system,
to use a small computational box and to compute the solution for larger
times. The same unstable bahaviour of the 2D localized soliton solutions was
demonstrated in

D. Vasileva, C.I. Christov, On the numerical investigation of unsteady solutions for the 2D

Boussinesq paradigm equation in a moving frame coordinate system, 6th Annual Meeting of the

Bulgarian Section of SIAM, BGSIAM’11 Proceedings (2012), 103–108.
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• This motivated us to investigate the question about the time behaviour of known
stable 1D solitons, but when they are taken as initial data in 2D problems.

• The BPE is transformed in order to keep the soliton in the center of the new
coordinate system – we set z := x− ct, where c is the velocity of the stationary
propagating soliton. Then the following equation for U(z, y, t) := u(z+ ct, y, t)
is obtained in the moving frame coordinate system

(I − β1∆̃)
∂2U

∂t2
− 2c

∂2U

∂t∂z
+ 2cβ1

∂2

∂t∂z
∆̃U = −β2

∂4U

∂y4
− (2β2 − β1c2)

∂4U

∂y2∂z2

− (β2 − β1c2)
∂4U

∂z4
+
∂2U

∂y2
+ (1− c2)∂

2U

∂z2
− α∆̃F (U).

Here I is the identity operator and ∆̃ stands for the Laplace operator with
respect to variables z and y. The fourth order spatial derivatives in the right
hand side constitute a fourth order elliptic operator if c2 < β2/β1. In a similar
way the second order derivatives generate a second order elliptic operator if
c2 < 1. Therefore we suppose in the following that the velocity c satisfies the
restriction c2 < min (1, β2/β1).
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Numerical method for solving BPE in the moving
frame coordinate system

We introduce the following new dependent function W (z, y, t) := U − β1∆̃U
and get the following equation for W

Wtt − 2cWtz + c2Wzz =
β2
β1

∆̃W +
β1 − β2
β2
1

(U −W )− ∆̃F (U).

Thus we obtain a system consisting of an equation for U and an equation for W .

The following implicit time stepping is designed for this system

Wn+1
ij − 2Wn

ij +Wn−1
ij

τ2
− c

V z[Wn+1
ij −Wn−1

ij ]

τ
+
c2

2
Λzz[Wn+1

ij +Wn−1
ij ]

=
β2
2β1

Λ
[
Wn+1
ij +Wn−1

ij

]
+
β1 − β2

2β2
1

[Un+1
ij −Wn+1

ij + Un−1
ij −Wn−1

ij ]

− αΛG(Un+1
ij , Unij, U

n−1
ij ),

Un+1
ij − β1ΛUn+1

ij = Wn+1
ij , i = 1, . . . , Nz − 1, j = 1, . . . , Ny − 1.
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Here τ is the time increment, the nonlinear term U2 is approximated by

G(Un+1
ij , Unij, U

n−1
ij ) = (Unij)

2 or

G(Un+1
ij , Unij, U

n−1
ij ) =

[
(Un+1

ij )2 + Un+1
ij Un−1

ij + (Un−1
ij )2

]
/3,

Λ = Λzz + Λyy stands for the difference approximation of the Laplace operator ∆̃
on a non-uniform grid, for example

ΛzzWij =
2Wi−1j

hzi−1(h
z
i + hzi−1)

− 2Wij

hzih
z
i−1

+
2Wi+1j

hzi (h
z
i + hzi−1)

,

and V z is a central difference approximation of ∂
∂z

VzWij =
hzi−1Wi+1j

hzi (h
z
i + hzi−1)

− hziWi−1j

hzi−1(h
z
i + hzi−1)

+
(hzi − hzi−1)Wij

hzih
z
i−1

.

Another way to approximate Wzt for c > 0 is by the following ”upwind”
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approximation

Wzt ≈
Wn+1
i+1j −W

n+1
ij −Wn

i+1j +Wn
ij

2τhzi
+
Wn
ij −Wn

i−1j −W
n−1
ij +Wn−1

i−1j

2τhzi−1

.

The values of the sought functions at the (n − 1)-st and n-th time stages are
considered as known when computing the (n+1)-st stage. When the approximation
G of the nonlinear term U2 includes the n+1-st level, the system is linearized using
internal (Picard) iterations, i.e., we perform successive iterations for W and U on
the (n+ 1)-st stage, starting with initial approximation from the already computed
n-th stage. Usually 5-10 nonlinear iterations are sufficient for convergence with
tolerance 10−14.

The following quasi-uniform grid is used in the z−direction

zi = sinh[ĥz(i− nz)], zNz−i = −zi, i = nz + 1, . . . , Nz, znz = 0,

where Nz is an even number, nz = (Nz)/2, ĥz = Dz/(Nz − 1), and Dz is
selected in a manner to have large enough computational region. The grid in the
y−direction is uniform.
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In order to test the properties of the numerical method, we take the known
one-dimensional solutions of the problem as initial data:

U(z, y, 0) = U sech(z) = (1− c2)1.5

α
sech2

(
0.5z

√
(1− c2)/(β2 − β1c2)

)
.

The second initial condition is chosen as
∂

∂t
U(z, y, 0) = 0.

Because of the localization of the wave profile in the z−direction, the boundary
conditions in this direction can be set equal to zero, when the size of the
computational domain is large enough. Neumann boundary conditions are imposed
in the y−direction.

The coupled system of equations is solved by the Bi-Conjugate Gradient Stabilized
Method with ILU preconditioner. In most examples we set the tolerance for the
iterative solution of the linear systems to be 10−14.
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Properties of the finite difference schemes

Theoretical analysis of the linear schemes (function G independent on U)
corresponding to both FDS as well as numerical tests about the convergence
and stability of the nonlinear schemes:

D. Vasileva, N. Kolkovska, Investigation of Two Numerical Schemes for the 2D Boussinesq Paradigm

Equation in a Moving Frame Coordinate System, 8th Annual Meeting of the Bulgarian Section of

SIAM, to appear in BGSIAM’13 Proceedings

Theorem 1. Let c2 < min (1, β2/β1). Then the finite difference schemes are
stable with respect to the initial data and the function G. Moreover, the
following estimate holds

(
(−Λ)U (n), U (n)

)
≤ C

[(
(−Λ)U (0), U (0)

)
+
(

(−Λ)−1BU
(0)
t , U

(0)
t

)
+

n∑
m=1

τ (Gm, Gm)

]

with a constant C independent on U , h and τ .
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Numerical experiments

In Bona, J., Sachs, R.: Global existence of smooth solutions and stability of solitary waves for

a generalized Boussinesq equation, Comm. Math. Phys., 118, 15–29 (1988) it is proved that
the aforementioned soliton solutions of the 1D generalized Boussinesq equation
(β2 = α = 1, β1 = 0) are stable when 0.25 < c2 < 1.

In Liu, Y: Instability of solitary waves for generalized Boussinesq equations, J. Dynamics Differential

Equations, 5, 537–558 (1993) nonlinear instability is obtained when c2 ≤ 0.25. In our
numerical experiments we observe a similar behaviour for the 1D BPE, i.e., when
β1 = 1. That is why in the next examples solutions for β1 = β2 = α = 1 are
investigated.

Example 1. c = 0.4 (1D soliton solution should be unstable).

The basic 2D grid has 256×16 cells in [−50, 50]× [−1, 1], the time step is τ = 0.2.

We compare the solution in the 2D setting with the 1D solution, computed on a
grid with 256 cells in the interval [−50, 50] and with the same time step τ = 0.2.

The numerical solutions are computed using the approximation on the n−th level
of the nonlinear term.
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Table 1: The difference δ(U) := max |U −U sech| between the exact and the
numerical solution for c = 0.4

central differences upwind differences

t 2D solution 1D solution 2D solution 1D solution

8 1.57e-3 1.57e-3 1.57e-3 1.57e-3

16 5.59e-3 5.59e-3 5.60e-3 5.60e-3

24 1.43e-2 1.43e-2 1.44e-2 1.44e-2

32 3.15e-2 3.15e-2 3.16e-2 3.16e-2

40 6.45e-2 6.45e-2 6.49e-2 6.49e-2

48 1.29e-1 1.29e-1 1.30e-1 1.30e-1

56 2.63e-1 2.63e-1 2.66e-1 2.66e-1

64 5.93e-1 5.93e-1 6.01e-1 6.01e-1

72 2.41 2.41 2.51 2.51

75 56.61 56.61 83.54 83.54

76 1.22e+11 1.22e+11 1.48e+14 1.48e+14
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Figure 1: Evolution of the 1D solution for c = 0.4.

The evolution of the cross-sections of the 2D solution is the same, because the 2D
solution keeps its constant behaviour in the y−direction.
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Figure 2: Evolution of the 2D solution for c = 0.4, y ∈ [−50, 50].
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Example 2. c = 0.6 (1D soliton solution should be stable).

The basic 2D grid has 256×16 cells in [−50, 50]× [−1, 1], the time step is τ = 0.2.

Table 2: The difference δ(U) := max |U −U sech| between the exact and the
numerical solution for c = 0.6

central differences upwind differences

t 2D solution 1D solution 2D solution 1D solution

102 5.15e-3 5.15e-3 5.16e-2 5.16e-3

103 9.73e-3 9.73e-3 9.66e-3 9.66e-3

104 1.80e-2 1.80e-2 1.83e-2 1.83e-2

105 1.05e-2 1.05e-2 6.94e-3 6.94e-3

106 1.01e-2 1.01e-2 8.49e-3 8.49e-3

Both approximations of the nonlinear term, as well as a stronger tolerance for the
iterative solution of the linear systems (10−28) also lead to practically the same
results.

6th Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, Albena, June 26–July 1, 2014 - p. 15/33



We also investigate the convergence of the 2D solution on three grids – the basic
grid has 256× 8 cells, τ = 0.2, the finer has 512× 16 cells, τ = 0.1, the finest has
1024× 32 cells, τ = 0.05.

The order of convergence l is computed as l = log2
δ(Uk−1)
δ(Uk)

, where k is the

number of the corresponding grid.

The central difference and upwind approximations of Wtz lead to practically the
same values in the numerical solution.

Both approximations of the nonlinear term as well as a stronger tolerance for the
iterative solution of the linear systems (10−28) also lead to practically the same
results.

6th Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, Albena, June 26–July 1, 2014 - p. 16/33



Table 3: The difference δ(U) between the exact and the numerical solution, and the order of

convergence l for c = 0.6

t = 100 t = 200 t = 400

τ Nx ×Ny δ(U) l δ(U) l δ(U) l

central differences, first approximation of the nonlinear term

0.2 256 × 8 5.15e-3 9.50e-3 1.67e-2

0.1 512 × 16 1.30e-3 1.99 2.46e-3 1.95 4.83e-3 1.79

0.05 1024 × 32 3.26e-4 2.00 6.20e-4 1.99 1.25e-3 1.95

central differences, second approximation of the nonlinear term

0.2 256 × 8 5.15e-3 9.50e-3 1.67e-2

0.1 512 × 16 1.30e-3 1.99 2.46e-3 1.95 4.83e-3 1.79

0.05 1024 × 32 3.26e-4 2.00 6.20e-4 1.99 1.25e-3 1.95

upwind differences, first approximation of the nonlinear term

0.2 256 × 8 5.16e-3 9.52e-3 1.67e-2

0.1 512 × 16 1.30e-3 1.99 2.46e-3 1.95 4.83e-3 1.79

0.05 1024 × 32 3.26e-4 2.00 6.20e-4 1.99 1.25e-3 1.95

upwind differences, second approximation of the nonlinear term

0.2 256 × 8 5.15e-3 9.52e-3 1.67e-2

0.1 512 × 16 1.30e-3 1.99 2.46e-3 1.95 4.83e-3 1.79

0.05 1024 × 32 3.26e-4 2.00 6.20e-4 1.99 1.25e-3 1.95
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Figure 3: Evolution of the 1D solution for c = 0.6.

The evolution of the cross-sections of the 2D solution is the same, because the 2D
solution keeps its constant behaviour in the y−direction. This constant behaviour
of the 2D solution is kept till y ∈ [−2.2, 2.2], i.e., when ymax := yNy ≤ 2.2. When
ymax ≥ 2.3 the 2D solution blows up at finite time.
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Figure 4: Evolution of 2D solution, c = 0.6, y ∈ [−50, 50], Nz = 256, Ny = 64.
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Figure 5: Evolution of 2D solution, c = 0.6, different ymax, Nz = 256, Ny = 64.

6th Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, Albena, June 26–July 1, 2014 - p. 20/33



Figure 6: Evolution of 2D solution, c = 0.6, different ymax, Nz = 256, Ny = 64.
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Figure 7: Evolution of 2D solution for c = 0.6, y ∈ [−48, 48], Nz = 256, Ny = 128.

6th Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, Albena, June 26–July 1, 2014 - p. 22/33



It seems that the number of the maxima strongly depends on the size of the
domain in the y-direction, and radially-symmetric blow-up structures are atractors
for some solutions of 2D BPE.

Figure 8: The time of change and the blow-up time for different intervals in y.
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Example 3. c = 0.9 (1D soliton solution should be stable).

First, results for (x, y) ∈ [−50, 50] × [−1, 1] are presented. The behaviour of
the solution is quite similar to that for c = 0.6 – second order convergence of
the solution is demonstrated, there is not any practical difference between both
discretisations of the mixed derivative Wtz, both approximations of the nonlinear
term, and the solution does not depend on the prescribed tolerance for the solution
of the linear systems, arising after the discretisation. The difference between the
exact and the approximate solution δ(U) is one and the same for 1D and 2D
settings of the problem. The solutions also preserve their shape for very large times
(t = 106)
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Table 4: The difference δ(U) := max |U −U sech| between the exact and the
numerical solution for c = 0.9

central differences upwind differences

t 2D solution 1D solution 2D solution 1D solution

102 2.09e-4 2.09e-4 2.09e-4 2.09e-4

103 1.64e-3 1.64e-3 1.63e-3 1.63e-3

104 3.27e-3 3.27e-3 3.29e-3 3.29e-3

105 3.42e-3 3.42e-3 3.33e-3 3.33e-3

106 1.81e-3 1.81e-3 2.86e-3 2.86e-3

Table 5: The difference δ(U) between the exact and the numerical solution, and
the order of convergence l for c = 0.9

t = 400 t = 800 t = 1200

τ Nx ×Ny δ(U) l δ(U) l δ(U) l

0.4 128× 8 2.86e-3 5.37e-3 7.05e-3

0.2 256× 16 7.40e-4 1.95 1.33e-3 2.01 2.05e-3 1.78

0.1 512× 32 1.88e-4 1.98 3.37e-4 1.99 5.33e-4 1.94
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Figure 9: Evolution of the 1D solution for c = 0.9.

The evolution of the cross-sections of the 2D solution is the same, because the 2D
solution keeps its constant behaviour in the y−direction.
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This constant behaviour of the 2D solution is kept till ymax = 7 on relatively fine
grids in the z−direction (Nz = 1024, Ny = 16) and for t ≤ 106. On relatively
coarse grids (Nz = 256 or 512) and for relatively large times (t ≈ 5∗104 or 2.5∗105

for ymax = 7) some additional small waves appear in front and behind the main
wave. When ymax ≥ 8 the solution loses its constant behaviour in the y−direction.
After that some additional small waves may appear near the main wave. These
small waves move with a different speed, hit the computational boundary and
perturb the solution, i.e., the prescribed boundary conditions for large z are not
relevant in such cases.

In order to show second order convergence for larger times, we either need to use
very fine grids in the x−direction or to impose Dirichlet boundary conditions in
the y−direction. That is why in the next table we present results with Dirichlet
boundary conditions in the y−direction and for ymax = 1. As can be seen, the
errors in this case are much slower and second order convergence is demonstrated
up to time t = 106.
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Table 6: The difference δ(U) between the exact and the numerical solution, and
the order of convergence l for c = 0.9, in the case of Dirichlet boundary conditions

t = 102 t = 104 t = 106

τ Nx ×Ny δ(U) l δ(U) l δ(U) l

central differences

0.8 64× 4 2.56e-4 2.46e-4 2.50e-4

0.4 128× 8 6.31e-5 2.02 6.33e-5 1.96 6.48e-5 1.92

0.2 256× 16 1.59e-5 1.99 1.60e-5 1.98 1.55e-5 2.06

upwind differences

0.8 64× 4 2.52e-4 2.42e-4 2.49e-4

0.4 128× 8 6.35e-5 1.99 6.23e-5 1.97 6.31e-5 1.98

0.2 256× 16 1.59e-5 2.00 1.58e-5 1.98 1.57e-5 2.01
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Figure 10: Evolution of 2D solution, c = 0.9, y ∈ [−50, 50], Nz = 256, Ny = 64.
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Figure 11: Evolution of 2D solution, c = 0.9, different ymax, Nz = 1024, Ny = 32.
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Figure 12: Evolution of 2D solution, c = 0.9, different ymax, Nz = 1024, Ny = 64.

When the computational region varies in the y-direction, we observe a similar
behaviour to that in Example 2. Note, here the number of the maxima for a
fixed ymax is essentially smaller then in the previous example. The positions of the
maxima may depend on the computational grid (compare results for ymax = 40 on
the last two figures).
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Conclusions

The moving frame coordinate system helps us to keep the localized structure in the
center of the coordinate system, where the grid is much finer. It also reduces the
effects of the reflection from the boundaries, allows us to use a small computational
box and to compute the solution for very large times.

The presented numerical experiments demonstrate the second order of convergence
of the schemes. Both discretisations of the mixed derivative Wtz, as well as both
approximations of the nonlinear term lead to practically one and the same results.

The stable 1D solutions preserve themselves for very large times. The solutions of
the 2D problem for the same parameters and in small intervals for y also preserve
their shape for very large times.

But the solutions of the 2D problem in large intervals for y seem to be not stable
– the waves preserve their shape in relatively long intervals of time (depending on
the parameters), but after that the initial shape of the waves is changed. Some
smooth oscilations appear in the y−direction, and the solutions start to grow.
Most probably this effect is due to the instability of the exact solution of the 2D
differential problem, even when the corresponding 1D solution is stable.
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Let us notice that the implicit time-stepping, used here, introduces some
perturbations in the y-direction. Perhaps an explicit method will behave better in
this case, but the important open question is about the stability of 2D solitons,
i.e., perturbations in the y-directions should be allowed.
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