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In the present work we study the Cauchy problem for the
Boussinesq Paradigm Equation (BPE)

∂2u

∂t2
− β1∆

∂2u

∂t2
= ∆u − β2∆2u + α∆f (u), x ∈ Rn, t > 0,

u(x , 0) = u0(x),
∂u

∂t
(x , 0) = u1(x),

on the unbounded region Rn with asymptotic boundary conditions
u(x , t)→ 0, ∆u(x , t)→ 0 as |x | → ∞,

where ∆ is the Laplace operator, α, β1 and β2 are positive
constants.

This is a 4-th order equation in x on unbounded region with
non-linearity contained in the term f (u) = up, p ≥ 2. The BPE is

unsolved relative to the time derivative ∂2u
∂t2 . (Sobolev type

equation)
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BPE appears in the modeling of surface waves in shallow waters.
————————————————————————————
For β2 > 0 the problem is well-posed in the sense of Hadamar

the derivation of BPE- Christov C.I., Wave motion, 34, 2001

Xu&Liu (2009) – existence of a global weak solution;
sufficient conditions for both the existence and the lack of a
global solution.

Polat&Ertas (2009) – local and global solution, blow-up of
solutions – under different conditions for the nonlinear
function f (u).

We assume that the functions u0, u1 and f (u) satisfy some
regularity conditions so that a unique solution for BPE exists and is
smooth enough.

N. Kolkovska, Kr. Angelow A Multicomponent ADI Method for Boussinesq Equation



Boussinesq Paradigm Equation
A Multicomponent ADI Scheme

Numerical results
Concluding remarks

Introduction
References
Splitting methods

theoretical study of numerical methods for ’good’BE (BPE with
β1 = 0)

finite difference method (Ortega, Sanz-Serna, Numerische
Math., 1990)

finite element method, optimal error estimates (A. Pani,
Saranga, Nonlinear Analysis, 1997);

pseudo spectral method (Frutos, Ortega, Sanz-Serna , Math.
Comp., 1991); for the damped BE (Choo, Comm. Korean
Math. Soc., 1998);

numerical simulations and physical interpretations - 1D, 2D:

Christov, C.I., Wave motion, 2001; Christov, Velarde, Intern.
J Bifurcation Chaos, 1994;

Chertock, A., Christov, C., Kurganov, A. 2011;

Christov, C., Kolkovska, N., Vasileva, D., LNCS, 2011;

Kolkovska, N., Dimova, LNCS (2011); CEJM (2012)
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Splitting methods for multidimensional problems

splitting with respect to physical processes

coordinate (spatial) splitting

locally one dimensional methods (Yanenko, Samarskii,
Marchuk...) the alternating triangular method (Samarskii
(1964),...)

alternating direction implicit methods (ADI): Peaceman and
Rachford (1955), Douglas (1955), 2D parabolic problems in
3D the scheme is not absolutely stable (Yanenko, 1965)

multicomponent ADI schemes or vector additive schemes
(Abrashin (1990), Zhadaeva, Samarskii, Vabishchevich, ...)
At each time step we obtain n discrete solutions satisfying n
discrete schemes, approximating the differential equation.

The aim of the lecture: To construct and analyze a
multicomponent ADI method for numerical solving of BPE.
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Notations

We consider 2D case, n = 2.

Domain Ω = [−L1, L1]× [−L2, L2], L1, L2 – sufficiently large;

a uniform mesh with steps h1, h2 in Ω:
xi = ih1, i = −M1,M1; yj = jh2, j = −M2,M2;

τ - the time step, tk = kτ , k = 0, 1, 2, ...;

mesh points (xi , yj , tk);

v
(k)
(i ,j) denotes the discrete approximation to u(xi , yj , tk) ;

notations for some discrete operators:

A1v
(k)
(i,j) = −

(
v

(k)
(i+1,j) − 2v

(k)
(i,j) + v

(k)
(i−1,j)

)
/h2

1

A2v
(k)
(i,j) = −

(
v

(k)
(i,j+1) − 2v

(k)
(i,j) + v

(k)
(i,j−1)

)
/h2

2,

v
(k)
t,(i,j) = (v

(k+1)
(i,j) − v

(k)
(i,j))/τ ; v

(k)
t̄,(i,j) =

(
v

(k)
(i,j) − v

(k−1)
(i,j)

)
/τ

Whenever possible the arguments of the mesh functions
(k)
(i ,j) are

omitted.
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Multicomponent ADI Method for BPE

At each time level k we have two discrete approximations v
(1)(k)
i ,j ,

v
(2)(k)
i ,j to the continuous function u. We solve with respect to

v (1)(k+1) and v (2)(k+1) the following system of equations

v
(1)(k)
t̄t + β1A1v

(1)(k)
t̄t + A1v

(1)(k+1) + β2A
2
1v

(1)(k+1) + β2A1A2v
(1)(k)

+ A2v
(2)(k) + β2A

2
2v

(2)(k) + β2A1A2v
(2)(k) + β1A2v

(2)(k−1)
t̄t

+ A1f (v (1)(k)) + A2f (v (2)(k)) = 0,

v
(2)(k)
t̄t + β1A2v

(2)(k)
t̄t + A2v

(2)(k+1) + β2A
2
2v

(2)(k+1) + A1v
(1)(k+1)

+ β2A
2
1v

(1)(k+1) + β2A1A2v
(1)(k+1) + β2A1A2v

(2)(k)

+ β1A1v
(1)(k)
t̄t + A1f (v (1)(k)) + A2f (v (2)(k)) = 0.

Nonlinearities are taken on the main time level k .
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Initial conditions

The multicomponent ADI scheme is a four-level scheme. Thus
values of the numerical solution on the three initial time levels are
required in order to start the method.

v
(m)(0)
(i ,j) = u0(xi , yj),m = 1, 2,

v
(m)(1)
(i ,j) = u0(xi , yj) + τu1(xi , yj) + 0.5τ2 (I + β1(A1 + A2))−1(
(A1 + A2)u0 + β2(A1 + A2)2u0 + α(A1 + A2)f (u0)

)
(xi , yj),m = 1, 2.

The third initial value v (m)(−1), m = 1, 2 at time level t = −τ is
determined from(
v

(m)(1)
(i ,j) − 2v

(m)(0)
(i ,j) + v

(m)(−1)
(i ,j)

)
τ−2 = (I + β1(A1 + A2))−1(

(A1 + A2)u0 + β2(A1 + A2)2u0 + α(A1 + A2)f (u0)
)

(xi , yj),m = 1, 2.
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Boundary conditions

For approximation of the second boundary condition

∆u(x , t)→ 0

the mesh is extended outside the domain Ωh by one line at each
space boundary and symmetric second-order finite differences
Aiv

(k), Aiv
(k), k = 1, 2, i = 1, 2 are used.
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The numerical implementation of Multicomponent ADI method is
based on solving of a set of mesh problems in y direction and
another set of mesh problems in x direction.

Sweep in the x direction for evaluation of v (1)(k+1).
1D subproblems along the lines y = const.

Sweep in the y direction for evaluation of v (2)(k+1).
1D subproblems along the lines x = const.

These 1D subproblems are five-diagonal linear systems of
equations. Thus the numerical method is efficient.
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Properties of the multicomponent ADI scheme

Both finite difference equations approximate the initial
equation with O(|h|2 + τ) error.

Both discrete solutions approximate the continuous solution
(see the main Theorem below).

The method is a generalization of classical ADI method as
both FDS are absolutely stable for n ≥ 2.

The algorithm for evaluation of v (1)(k+1) and v (2)(k+1) is
based on solving of 5-diagonal linear systems in each
direction. Hence the method is efficient.
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Analysis of the linear Multicomponent ADI Scheme

Let f (u) = 0; then BPE become linear. In the space of functions,
which vanish on infinity, define operators

Λ1(u) = −∂
2u

∂x2
1

, Λ2(u) = −∂
2u

∂x2
2

.

Define the functional E (u)(t):

E (u)(t) =

∥∥∥∥Λ
1/2
1

∂u

∂t
(·, t)

∥∥∥∥2

+

∥∥∥∥Λ
1/2
2

∂u

∂t
(·, t)

∥∥∥∥2

+ β2

∥∥∥∥(Λ1 + Λ2)
∂u

∂t
(·, t)

∥∥∥∥2

+ β1

∥∥∥∥Λ
1/2
1

∂2u

∂t2
(·, t)

∥∥∥∥2

+ β1

∥∥∥∥Λ
1/2
2

∂2u

∂t2
(·, t)

∥∥∥∥2

+

∥∥∥∥∂2u

∂t2
(·, t)

∥∥∥∥2

,

where || · || is the standard norm in L2(R2).

Theorem (Conservation law for the linear problem)

Let f (u) = 0. Then E (u)(t) = E (u)(0) for every t > 0.
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Define
→
v
k

= (v (1)(k), v (2)(k)) as the couple of solutions. Let

N(
→
v

(k)
) be the semi-norm (energy norm):

N(
→
v

(k)
) =‖A

1
2
1 v

(1)(k)
t ‖2 + ‖A

1
2
2 v

(2)(k)
t ‖2 + β2‖A1v

(1)(k)
t + A2v

(2)(k)
t ‖2

+ β1‖A
1
2
1 v

(1)(k)
t̄t ‖2 + β1‖A

1
2
2 v

(2)(k)
t̄t ‖2 + ‖v (2)(k)

t̄t ‖2.

The values of v (1)(k), v (2)(k) on three consecutive time levels
(k − 1), (k), (k + 1) are included in this norm.
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Theorem (Discrete identity)

The solutions
→
v

(K)
to BPE with f (u) = 0 satisfy the equalities

N(
→
v

(K)
) + τ

K∑
k=1

τ

(
‖A

1
2
1 v

(1)(k)
t̄t ‖2 + β2‖A1v

(1)(k)
t̄t ‖2 + β1‖A

1
2
1 v

(1)(k)
t̄tt̄ ‖2

)

+ τ

K∑
k=1

τ

(
‖A

1
2
2 v

(2)(k)
t̄t ‖2 + β2‖A2v

(2)(k)
t̄t ‖2 + β1‖A

1
2
2 v

(2)(k)
t̄tt̄ ‖2

)

+ τ

K∑
k=1

τ‖A1v
(1)(k)
t + β2A

2
1v

(1)(k)
t + β2A1A2v

(2)(k−1)
t + β1A1v

(1)(k−1)
t̄tt ‖2

+ τ

K∑
k=1

τ‖A2v
(2)(k)
t + β2A

2
2v

(2)(k)
t + β2A1A2v

(1)(k)
t + β1A2v

(2)(k−1)
t̄tt ‖2

= N(
→
v

(0)
), K = 1, 2, . . .
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Corollary

N(
→
v

(K)
)− N(

→
v

(0)
) = O(τ),K = 1, 2, · · · .

Theorem (Convergence of the Multicomponent ADI Scheme)

Assume that the solution u to BPE obeys u ∈ C 6,6
(
R2 × (0,T )

)
and the solutions v (1)(k), v (2)(k) to the multicomponent ADI
scheme are bounded in the maximal norm. Then v (1)(k) and v (2)(k)

converge to the exact solution u as |h|, τ → 0 and the energy norm
estimate

N(
→
z

(k)
) ≤ C

(
|h|2 + τ

)2
, k = 2, 3, · · · ,K

holds with a constant C independent on h and τ , where
z(1)(k) = y (1)(k) − u(·, tk) and z(2)(k) = y (2)(k) − u(·, tk) are the
errors of the method.
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Corollaries

According to the main Theorem, the multicomponent ADI scheme
has one and the same order of convergence O(|h|2 + τ) for the
nonlinear problem and for the linear problem.

Corollary

Under the assumptions of the main Theorem the Multicomponent
ADI scheme admits the following error estimates for every
k = 2, 3, · · · ,K

‖z(1)(k)‖+ ‖z(2)(k)‖+ ‖A0.5
1 z(1)(k)‖+ ‖A0.5

2 z(2)(k)‖ ≤ C
(
|h|2 + τ

)
,

‖A1z
(1)(k) + A2z

(2)(k)‖ ≤ C
(
|h|2 + τ

)
,

‖z(m)(k)
t ‖+ ‖z(m)(k)

t̄t ‖ ≤ C
(
|h|2 + τ

)
, m = 1, 2

‖z(m)(k)‖L∞ ≤ C
(
|h|2 + τ

)
, m = 1, 2.
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Numerical results

Parameters: α = 3, β1 = 3, β2 = 1, p = 2. Initial conditions (from
Chertok, Christov, Kurganov, 2011) correspond to a solitary wave
moving along the y -axis with velocity c .

τ h R v (1) R v (2) τ h R v (1) R v (2)

0.08 0.075 - - 0.02 0.3 - -
0.04 0.075 0.9384 0.9450 0.02 0.15 2.5502 2.6853
0.02 0.075 - - 0.02 0.075 - -

Table: Numerical rate of convergence, dependence on τ (left part) and h
(right part); time T = 8

The numerical rate of convergence (in the uniform norm) is
evaluated by Runge method using three nested meshes.
The calculations confirm that the schemes are of order O(|h|2 + τ).
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Figure: Evolution of the numerical solution in time

For t < 5 the shape of the numerical solution is similar to the
initial solution. For larger times the numerical solution changes its
initial form and transforms into a diverging propagating wave.
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Figure: Cross section x = 0 of the solution v (2) with c = 0.2 at times
t = 0, 2.4, 4.8, 7.2, 9.6, 12
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Figure: Evolution of the maximum of the solutions for c = 0 (left) and
c = 0.2 (right)

Comparison with the maximum of the numerical solution obtained
by the conservative scheme with accuracy O(|h|2 + τ2), from
Christov, Vasileva, Kolkovska (2011)
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Concluding remarks

We develop a multicomponent ADI finite difference scheme
for multidimensional BPE. We replace the numerical solution
of the original BPE with a solution of a system of two finite
difference schemes (FDS).

The energy norm of the numerical solution to the linear FDS
at each time tk deviates from the energy norm of the initial
data by a small term of first order in time step.

Error estimates in the uniform norm and in the Sobolev mesh
norms are obtained.

Efficient algorithm for evaluation of the numerical solutions is
derived. The numerical experiments show good agreement
with the theoretical results.
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