Numerical Study of Traveling Wave Solutions to 2D Boussinesq Equation

Mathematics Days in Sofia
2014, IMI, BAS, Sofia

K. Angelow, N. Kolkovska
Posing The Problem

Hyperbolic Equation

Boussinesq Paradigm Equation (BPE):

\[u_{tt} - \Delta u - \beta_1 \Delta u_{tt} + \beta_2 \Delta^2 u + \Delta F(u) = 0, \quad F(u) := \alpha u^2 \]

\[u: \mathbb{R}^2 \times [0,T] \to \mathbb{R} \]

\((x, y, t) \to u(x, y, t) \)

- Origins\(^1,\(^2\)
- Model
- Properties
 - soliton solution
 - behavior of the soliton

Hyperbolic Equation
Elliptic (Stationary) Equation

- Variable change
- Stationary BPE (S BPE)
 - solutions of type $u(x,y,t) = v(x,y-ct)$:
 \[\beta c^2 (E - \Delta) v_{yy} - \beta \Delta v + \Delta^2 v + \alpha \beta \Delta (v^2) = 0, \quad (S \ BPE) \]
 with $\beta = \beta_1 / \beta_2$ and $\alpha, \beta > 0$; $c^2 < \text{min}(1, 1/\beta) - 4^{th}$ order elliptic equation

- Equation (S BPE) as a second order system (SYS):
 \[-(1 - c^2 \beta) \Delta v + \beta (1 - c^2) v + \alpha \beta v^2 = w \]
 \[-\Delta w = c^2 \beta (E - \Delta) v_{xx} \]

Elliptic Equation
Solver Algorithm

Simple Iteration Method

- Add artificial time
- Add false time derivatives
- Solve the new pertinent transient equation system
 - Wait for \(\hat{\nu} \) and \(\hat{\omega} \) to converge

\[
\frac{\partial \hat{\nu}}{\partial t} - (1 - c^2 \beta) \Delta \hat{\nu} + \beta (1 - c^2) \hat{\nu} + \alpha \beta \Theta \hat{\nu}^2 = \hat{\omega} \quad (SIM.1)
\]

\[
\frac{\partial \hat{\omega}}{\partial t} - \Delta \hat{\omega} = c^2 \beta (E - \Delta) \hat{\nu}_{xx}. \quad (SIM.2)
\]
Finite Differences

<table>
<thead>
<tr>
<th>order</th>
<th>finite difference</th>
<th>second derivative approx</th>
</tr>
</thead>
<tbody>
<tr>
<td>p = 2:</td>
<td>$[1 \ -2 \ 1]$</td>
<td>$\frac{\partial^2}{\partial x^2} v = \frac{1}{h^2} \left[(x-h) - 2v(x) + v(x-h) \right]$</td>
</tr>
<tr>
<td>p = 4:</td>
<td>$\left[-\frac{1}{12}, \frac{4}{3}, \frac{5}{2}, \frac{4}{3}, \frac{1}{12} \right]$</td>
<td>$\frac{\partial^2}{\partial x^2} v = \frac{1}{h^2} \left[\frac{1}{12} v(x-2h) + \frac{4}{3} v(x-h) - \frac{5}{2} v(x) + \frac{4}{3} v(x+h) - \frac{1}{12} v(x+2h) \right]$</td>
</tr>
<tr>
<td>p = 6:</td>
<td>$\left[\frac{1}{90}, -\frac{3}{20}, \frac{3}{18}, -\frac{3}{20}, \frac{3}{90} \right]$</td>
<td>$\frac{\partial^2}{\partial x^2} v = \frac{1}{h^2} \left[\frac{1}{90} v(x-3h) - \frac{3}{20} v(x-2h) + \frac{3}{2} v(x-h) - \frac{49}{18} v(x) + \frac{3}{2} v(x+h) - \frac{3}{20} v(x+2h) + \frac{3}{90} v(x+3h) \right]$</td>
</tr>
</tbody>
</table>
Additional Tools

- The trivial solution must be avoided
- Fix the value of the function in point \((0, 0)\)
 - \(\nu(0,0) = \theta\)
 - \(\tilde{\nu} = \theta \nu\) and \(\tilde{w} = \theta w\)

\[
-(1 - c^2 \beta) \Delta \hat{\nu} + \beta(1 - c^2) \hat{\nu} + \alpha \beta \Theta \hat{\nu}^2 = \hat{\nu} \quad (SYS.1)
\]

\[
- \Delta \hat{w} = c^2 \beta (E - \Delta) \hat{\nu}_{xx} \quad (SYS.2)
\]

- The value of \(\theta\) is found from the equation (S BPE)

\[
\theta = \left. \frac{(1 - c^2 \beta) \Delta \hat{\nu} - \beta(1 - c^2) \hat{\nu} + \hat{w}}{\alpha \beta} \right|_{x=0, y=0} \quad (TH)
\]

Boundary Condition

Solution Asymptotics

- $1/r^2$ asymptotics decay at infinity\(^4\)

\[
\beta c^2 v_{yy} - \beta \Delta v - \beta c^2 \Delta v_{yy} + \Delta^2 v + \alpha \beta \Delta(v^2) = 0, \quad (S \ BPE)
\]

- Assume that $(\partial^n/\partial r^n)v$ has $(1/r^{n+2})$ asymptotics decay at infinity

\[
\frac{\partial^2}{\partial y^2} = \sin^2 \theta \frac{\partial^2}{\partial r^2} + \frac{\cos^2 \theta}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{\sin 2\theta}{r} \frac{\partial^2}{\partial r \partial \theta} - \frac{\sin 2\theta}{r^2} \frac{\partial}{\partial \theta} + \frac{\cos^2 \theta}{r} \frac{\partial}{\partial r}.
\]

\[
c^2 v_{yy} = \Delta v, \quad (\text{inf})
\]

\[
v(x, y), \Delta v(x, y) \xrightarrow{\infty} \text{as} \quad r = \sqrt{x^2 + y^2} \xrightarrow{\infty}
\]

Using the given properties of the equation:

- $1/r^2$ asymptotics decay at infinity
- the symmetry of the solution
- positive/negative domains

the following formula is obtained for the boundary condition:

\[
\begin{align*}
\bar{v}(x, y) &= \mu \frac{(1-c^2)x^2 - y^2}{(1-c^2)x^2 + y^2} \quad (vB) \\
\bar{w}(x, y) &= \bar{\mu} \frac{(1-c^2)x^2 - y^2}{(1-c^2)x^2 + y^2} \quad (wB)
\end{align*}
\]
Validation

New Stop Criterion

- Choose neutral condition - the $1/r^2$ profile of the solution
- better convergence results for all finite difference schemes
- legit results
 - solution
 - boundary function
x-y cross-sections of the solution

Upper panels:
- The absolute value of the function on log-log plots.
- Black line describes \((vB)\) function with the respective \(\mu\) parameter

Lower panels show:
- Plots display \(vr^2\) values along the vertical \(z\)-axis

The solution settles down as the number of points \(N_x, N_y\) per simulation increases!

The effect of the mesh size. Lower panels: the function scaled by \(r^2\). \(N_x, N_y\) – number of mesh-points along \(x, y\) axis.
Validation - Algorithm's Convergence

<table>
<thead>
<tr>
<th>FDS</th>
<th>h</th>
<th>Errors E_i in L_2</th>
<th>Conv Rate</th>
<th>Errors E_i in L_∞</th>
<th>Conv Rate</th>
<th>Diff D_i in L_2</th>
<th>Diff D_i in L_∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chr O(h^2)</td>
<td>0.2 0.1 0.05</td>
<td>1.4232e-02 3.2384e-03</td>
<td>2.135</td>
<td>1.6732e-02 3.9976e-03</td>
<td>2.065</td>
<td>9.9534e-09 3.9273e-06</td>
<td>6.7328e-08</td>
</tr>
<tr>
<td>Nat O(h^2)</td>
<td>0.2 0.1 0.05</td>
<td>1.4228e-02 3.2416e-03</td>
<td>2.134</td>
<td>1.6729e-02 4.0012e-03</td>
<td>2.063</td>
<td>6.3317e-06 1.7911e-08</td>
<td>6.7328e-08</td>
</tr>
<tr>
<td>Chr O(h^4)</td>
<td>0.2 0.1 0.05</td>
<td>1.7575e-03 1.1329e-04</td>
<td>3.955</td>
<td>2.4992e-03 1.6753e-04</td>
<td>3.898</td>
<td>1.8764e-08 3.1189e-06</td>
<td>5.5434e-08</td>
</tr>
<tr>
<td>Nat O(h^4)</td>
<td>0.2 0.1 0.05</td>
<td>1.7548e-03 1.1584e-04</td>
<td>3.921</td>
<td>2.4957e-03 1.7092e-04</td>
<td>3.868</td>
<td>2.7887e-08 5.0020e-06</td>
<td>8.6233e-08</td>
</tr>
<tr>
<td>Chr O(h^6)</td>
<td>0.4 0.2 0.1</td>
<td>2.0981e-02 3.6129e-04</td>
<td>5.859</td>
<td>2.9345e-02 5.9043e-04</td>
<td>5.635</td>
<td>1.0594e-08 9.6980e-08</td>
<td>3.0651e-08</td>
</tr>
<tr>
<td>Nat O(h^6)</td>
<td>0.4 0.2 0.1</td>
<td>2.0981e-02 3.6134e-04</td>
<td>5.859</td>
<td>2.9345e-02 5.9050e-04</td>
<td>5.635</td>
<td>1.3942e-08 1.4391e-07</td>
<td>4.9035e-08</td>
</tr>
</tbody>
</table>

1. Runge's formula for convergence rate

$$E_1 = \| \hat{v}_{[h]} - \hat{v}_{[h/2]} \|, E_2 = \| \hat{v}_{[h/2]} - \hat{v}_{[h/4]} \|,$$

2. Diff between Chr and Nat solutions

$$D_1 = \| \hat{v}.Chr_{[h]} - \hat{v}.Nat_{[h]} \|, D_2 = \| \hat{v}.Chr_{[h/2]} - \hat{v}.Nat_{[h/2]} \|, D_3 = \| \hat{v}.Chr_{[h/4]} - \hat{v}.Nat_{[h/4]} \|$$
Derivative Convergence

<table>
<thead>
<tr>
<th>FDS</th>
<th>h</th>
<th>errors in L_2</th>
<th>Conv. Rate</th>
<th>errors in L_{∞}</th>
<th>Conv. Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c=0.45$</td>
<td>0.8</td>
<td>2.9698e-01</td>
<td>2.1111</td>
<td>4.2497e-01</td>
<td>2.2972</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>6.8742e-02</td>
<td></td>
<td>8.6465e-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>8.7696ee-02</td>
<td>1.9905</td>
<td>7.5691e-02</td>
<td>1.9998</td>
</tr>
<tr>
<td>$c=0.1$</td>
<td>0.8</td>
<td>3.4849e-01</td>
<td></td>
<td>3.0271e-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>8.7696ee-02</td>
<td>1.9905</td>
<td>7.5691e-02</td>
<td>1.9998</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>8.0095e-01</td>
<td>5.6747</td>
<td>9.8911e-01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>1.5680e-02</td>
<td></td>
<td>2.1238e-02</td>
<td>5.5414</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Errors in L_2 and L_{∞} norms and convergence rate for fourth order x-derivative evaluated by the FDS with $O(h^2)$ and $O(h^6)$ approximation order.

Runge's test, evaluating the fourth x-derivative of the solution, show that it converges numerically. Tests for other fourth order derivatives are similar and we do not present them here.
Best-Fitt Approximation formulae

\[
\begin{align*}
 w^5(x, y, t; c) &= f(x, y) + c^2[(1 - \beta_1)g_a(x, y) + \beta_1g_b(x, y)] \\
 &\quad + c^2[(1 - \beta_1)h_1(x, y) + \beta_1h_2(x, y)\cos(2\theta)],
\end{align*}
\]

where

\[
\begin{align*}
 f(x, y) &= \frac{2.4(1 + 0.24r^2)}{\cosh(r)(1 + 0.095r^2)^{1.5}}, \\
 g_a(x, y) &= -\frac{1.2(1 - 0.177r^{2.4})}{\cosh(r)|1 + 0.11r^{2.4}|}, \\
 g_b(x, y) &= -\frac{1.2(1 + 0.22r^2)}{\cosh(r)|1 + 0.11r^{2.4}|}, \\
 h_1(x, y) &= \frac{a_tr^2 + b_tr^3 + c_tr^4 + v_tr^6}{1 + d_tr + e_tr^2 + f_tr^3 + g_tr^4 + h_tr^5 + q_tr^6 + w_tr^8}.
\end{align*}
\]

Comparison between the numerical solution $\tilde{\nu}$ and the best fit formulae c,β.
Thank you for your attention