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An implicit, energy conserving and unconditionally stable difference scheme with
second order truncation error in space and time is presented for the solution of the
2D Boussinesq Paradigm Equation (BPE) [1]:

utt = ∆ [u− F (u) + β1utt − β2∆u] , F (u) := αu2, (1)

where u is the surface elevation of the wave, β1, β2 > 0 are two dispersion coefficients,
and α > 0 is an amplitude parameter. The main difference of (1) from the original
Boussinesq Equation is the presence of a term proportional to β1 6= 0 called “rotational
inertia”.
It has been recently shown that the 2D BPE admits stationary translating local-
ized solutions [2, 3, 4], which can be obtained approximately using finite differences,
perturbation technique, or Galerkin spectral method. First results about their time
behaviour and structural stability are presented in [5] and [6], and here we continue
their investigation, designing an energy conserving numerical method.

Numerical method for solving BPE. We introduce the following new
dependent function

v(x, y, t) := u− β1∆u (2a)

and substituting it in Eq. (1) we get the following equation for v

vtt =
β2

β1
∆v +

β1 − β2

β2
1

(u− v)−∆F (u). (2b)

Thus we obtain a system consisting of an elliptic equation for u, Eq. (2a), and a
hyperbolic equation for v: Eq. (2b).
The following implicit time stepping can be designed for the system (2)

vn+1
ij − 2vn

ij + vn−1
ij

τ2
=

β2

2β1
Λ

[
vn+1

ij + vn−1
ij

]
+

β1 − β2

2β2
1

[un+1
ij − vn+1

ij + un−1
ij − vn−1

ij ]

− ΛG(un+1
ij , un−1

ij ), (3a)

un+1
ij − β1Λun+1

ij = vn+1
ij , i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1. (3b)
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Here τ is the time increment, G(un+1
ij , un−1

ij ) =
[
(un+1

ij )2 + un+1
ij un−1

ij + (un−1
ij )2

]
/3,

and Λ = Λxx + Λyy stands for the difference approximation of the Laplace operator
∆ on a non-uniform grid, for example

Λxxφij =
2φi−1j

hx
i−1(h

x
i + hx

i−1)
− 2φij

hx
i hx

i−1

+
2φi+1j

hx
i (hx

i + hx
i−1)

=
∂2φ

∂x2

∣∣∣
ij

+ O(|hx
i − hx

i−1|).

For a smooth distribution of the nonuniform grid (as the one considered here) one
has

O(|hx
i − hx

i−1|) ≈
∂hx

∂x
O(|hi−1|2) = O(|hi−1|2).

The values of the sought functions at the (n−1)-st and n-th time stages are considered
as known when computing the (n + 1)-st stage. The nonlinear term G is linearized
using Picard method, i.e., we perform successive iterations for u and v on the (n+1)-st
stage, starting with initial conditions from the already computed n-th stage.
The unconditional stability of the scheme and the conservation of the energy are
shown in [7, 8]. The convergence is investigated in [8].
The following non-uniform grid is used in the x−direction

xi = sinh[ĥx(i− nx)], xNx+1−i = −xi, i = nx + 1, . . . , Nx + 1, xnx = 0,

where Nx is an odd number, nx = (Nx + 1)/2, ĥx = Dx/Nx, and Dx is selected in
a manner to have large enough computational region. The grid in the y−direction is
defined in the same way.
Because of the localization of the wave profile, the boundary conditions can be set
equal to zero, when the size of the computational domain is large enough. The initial
conditions are created using the best-fit approximation provided in [4]. The coupled
system of equations (3) is solved by the Bi-Conjugate Gradient Stabilized Method
with ILU preconditioner [9].

Numerical experiments. Denote by us(x, y; c) the best-fit approximation of
the stationary translating (with speed c) localized solutions, obtained in [4]

us(x, y; c) = f(x, y) + c2 [(1− β1)ga(x, y) + β1gb(x, y)]
+ c2 [(1− β1)h1(x, y) + β1h2(x, y)] cos [2 arctan(y/x)] ,

where the formulas for the functions f, ga, gb may be found in [4]. For t = 0, the first
initial condition is obvious: u(x, y, 0) = us(x, y; c), and the second initial condition
may be chosen as

u(x, y,−τ) = us(x, y + cτ ; c). (4)

The solutions for β1 = 3, β2 = 1, α = 1 are computed on three different grids in the
region x, y ∈ [−50, 50] (with 161 × 161, 321 × 321 and 641 × 641 grid points), and
with at least three different time increments (τ = 0.2, 0.1 and 0.05). The results for
c = 0, 0.25 and 0.3 are in good agreement with those in [6], where the nonlinear term
was approximated on the already computed n-th time stage, but the corresponding
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Figure 1: Evolution of the solution for c = 0.27, the maximum u(0, ymax), and the
trajectory of the maximum.

scheme is not energy conserving. That is why here we will present some results for
different values of c.

Example 1. We present the evolution of the solution for the case c = 0.27 in Fig. 1.
The values of the maximum of the solution umax and its y-coordinate ymax as functions
of time are also shown in Fig. 1. The behaviour of the solution is the same on all
grids and for all times steps. For t ≤ 10, the solution not only moves with a speed,
close to c = 0.27, but also behaves like a soliton, i.e., preserves its shape, albeit its
maximum decreases slightly. For larger times, the solution transforms into a diverging
propagating wave. The phase speed of the wave increases and reaches the limit for
the small linear waves, c = 1.
For t = 4, 8, 12 the computed maximum of the solution umax, the difference ∆umax :=
uprev

max − umax (subscript ‘prev’ denotes the previous row in the table), and the rate of
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Table 1: The maximum of the solution, convergence in space and time, c = 0.27

t = 4 t = 8 t = 12 t ∈ [0, 30]
τ Nx+1 umax ∆umax l umax ∆umax l umax ∆umax l energy
0.1 160 2.2683 2.2929 2.2108 9.153520
0.1 320 2.2631 5.23e-3 2.2553 3.76e-2 2.0426 1.68e-1 9.151786
0.1 640 2.2615 1.60e-3 1.7 2.2473 8.06e-3 2.2 2.0047 3.78e-2 2.2 9.151368
0.2 320 2.2627 2.2400 1.9701 9.151562
0.1 320 2.2631 -3.84e-4 2.2553 -1.53e-2 2.0426 -7.25e-2 9.151786

0.05 320 2.2632 -1.15e-4 1.7 2.2597 -4.38e-3 1.8 2.0602 -1.77e-2 2.0 9.151861
0.025 320 2.2633 -3.00e-5 1.9 2.2608 -1.12e-3 2.0 2.0650 -4.79e-3 1.9 9.151877

Table 2: The maximum of the solution, convergence in space and time, c = 0.28

t = 4 t = 8 t = 12 t ∈ [0, 30]
τ Nx+1 umax ∆umax l umax ∆umax l umax ∆umax l energy
0.1 160 2.2767 2.3555 2.6126 9.266297
0.1 320 2.2698 6.97e-3 2.3213 3.42e-2 2.4007 2.11e-1 9.264460
0.1 640 2.2680 1.79e-3 2.0 2.3125 8.80e-3 2.0 2.3510 4.97e-2 2.1 9.264001
0.2 320 2.2700 2.3058 2.3116 9.264181
0.1 320 2.2698 2.34e-4 2.3213 -1.54e-2 2.4007 -8.90e-2 9.264460

0.05 320 2.2697 5.50e-5 2.1 2.3247 -3.40e-3 2.2 2.4220 -2.13e-2 2.1 9.264524

convergence l = log2 (|uprev
max − uprev,prev

max |/|umax − uprev
max |), are shown in Table 1. It is

seen that the method has second order numerical accuracy in space and time. The
last column in the table is for the energy of the numerical solution, as defined in [8].
The energy is really conserved during the computations and the presented values are
for each t ∈ [0, 30].
Here is to be mentioned that the evolution of the solution for phase speeds c ≤ 0.27
is qualitatively the same. Quantitatively, the time needed the solution to set on the
dispersive track is usually smaller for a smaller phase speed, because of the reduced
self-focusing role of the nonlinearity.

Example 2. In Fig. 2, results for c = 0.28 are presented. For t < 10 the behavior
of the solution is similar to that in the previous example, but for larger times and
when the time step τ is less than 0.2, it turns to grow and blows-up for t ≈ 20. The
blow-up is connected with the fact that the energy functional is not positive definite
for BPE with quadratic nonlinearity (see [10] and the literature cited therein). Even
when the amplitude is increasing, the energy is kept constant. A threshold value
c = 0.3 was the last one for which a non-blowing-up evolution was found in [5] on the
coarsest grid, while blow-up was encountered on the finest grid. Here we observe a
non-blow-up for large time steps (τ = 0.2) and a smaller value of c, which is probably
due to the different numerical method used, namely the different scheme dispersion.
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Figure 2: Evolution of the solution for c = 0.28, the maximum u(0, ymax), and the
trajectory of the maximum.

Let us also note that when the energy non-conserving method from [6] is used, the
solution blows-up for τ = 0.2, as well.
As can be seen from Table 2 the method has second order numerical accuracy in space
and time.

Conclusion. An energy conserving difference scheme for the investigation of the
time evolution of the localized solutions of the Boussinesq Paradigm Equation (BPE)
in two spatial dimensions is devised. The grid is non-uniform and the truncation
error is second order in space and time. The results obtained for the time evolution of
supposedly stationary propagating waves for different phase speeds are very similar
to those in [6]. We have found that for phase speeds 0 6= c ≤ 0.27, the initially
localized wave disperses in the form of ring-wave expanding to infinity. Respectively,
for c ≥ 0.29 the initial evolution resembles a stationary propagation, but after some
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period of time a blow-up of the solution takes place. When c = 0.28, the asymptotic
behavior of the solution depends on the numerical dispersion of the scheme, which is
contingent on the value of time increment. Our results are in good agreement with [5],
where a similar (c = 0.3) threshold is established for the appearance of the blow-up.
The fact that for c ≈ 0.28, an time interval exists in which the solution is virtually
reserving its shape while steadily translating means that 2D solitons could be found
for the class of BPEs. This means that the nonlinearity is strong enough to balance the
dispersion which is now much stronger than in the 1D case. In order to firmly establish
this fact, our future plans are to consider also equations with different nonlinearities
for which the blow-up is not possible.
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