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Introduction. One of the most important features of the generalized wave equa-
tions containing nonlinearity and dispersion, is that they possess solutions of type of
permanent waves as shown in the original Boussinesq work [1]. In 1D, a plethora of
deep mathematical results have been obtained for solitons, but it is of crucial impor-
tance to investigate also the 2D case, because of the different phenomenology and the
practical importance. The accurate derivation of the Boussinesq system combined
with an approximation, that reduces the full model to a single equation, leads to the
Boussinesq Paradigm Equation (BPE) [2]:

utt = ∆ [u− F (u) + β1utt − β2∆u] , F (u) := αu2, (1)

where u is the surface elevation of the wave, β1, β2 > 0 are two dispersion coefficients,
and α > 0 is an amplitude parameter. The main difference of (1) from the original
Boussinesq Equation is the presence of a term proportional to β1 6= 0 called “rotational
inertia”.
It has been recently shown that the 2D BPE admits stationary translating localized
solutions [3, 4, 5], which can be obtained approximately using finite differences, per-
turbation technique, or Galerkin spectral method. Results about their time behaviour
and structural stability are presented in [6, 7, 8], and here we continue their inves-
tigation using a moving frame coordinate system. It allows us to keep the localized
structure in the center of the coordinate system, reducing the effects of reflection from
the boundary.

Numerical method for solving BPE. We introduce the following new
dependent function

v(x, y, t) := u− β1∆u (2a)

and substituting it in Eq. (1) we get the following equation for v

vtt =
β2

β1
∆v +

β1 − β2

β2
1

(u− v)−∆F (u).
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We set z := y − ct, where c is the velocity of the stationary propagating soliton and
obtain the following equation for w(x, z, t) := v(x, z + ct, t)

wtt − 2cwtz + c2wzz =
β2

β1
∆w +

β1 − β2

β2
1

(u− w)− α∆F (u). (2b)

Thus we obtain a system consisting of an equation for u, Eq. (2a), and an equation
for w: Eq. (2b).
The following implicit time stepping can be designed for the system (2)

wn+1
ij − 2wn

ij + wn−1
ij

τ2
− c

V z[wn+1
ij − wn−1

ij ]
τ

+
c2

2
Λzz[wn+1

ij + wn−1
ij ]

=
β2

2β1
Λ

[
wn+1

ij + wn−1
ij

]
+

β1 − β2

2β2
1

[un+1
ij − wn+1

ij + un−1
ij − wn−1

ij ]

− ΛG(un+1
ij , un−1

ij ), (3a)

un+1
ij − β1Λun+1

ij = wn+1
ij , i = 0, . . . , Nx + 1, j = 0, . . . , Ny + 1. (3b)

Here τ is the time increment, G(un+1
ij , un−1

ij ) =
[
(un+1

ij )2 + un+1
ij un−1

ij + (un−1
ij )2

]
/3,

Λ = Λxx + Λzz stands for the difference approximation of the Laplace operator ∆ on
a non-uniform grid, for example

Λxxφij =
2φi−1j

hx
i−1(h

x
i + hx

i−1)
− 2φij

hx
i hx

i−1

+
2φi+1j

hx
i (hx

i + hx
i−1)

=
∂2φ

∂x2

∣∣∣
ij

+ O(|hx
i − hx

i−1|),

and V z is a central difference approximation of ∂
∂z

Vzφij =
hz

j−1φij+1

hz
j (h

z
j + hz

j−1)
− hz

i φij−1

hz
j−1(h

z
j + hz

j−1)
−

(hz
j − hz

j−1)φij

hz
i h

z
j−1

=
∂φ

∂z

∣∣∣
ij
+O(|hz

j −hz
j−1|).

Another way to approximate wzt for c > 0 is by the following ”upwind” approximation

wzt =
wn+1

ij+1 − wn+1
ij − wn

ij+1 + wn
ij

2τhz
j

+
wn

ij − wn
ij−1 − wn−1

ij + wn−1
ij−1

2τhz
j−1

+O(|hz
j−hz

j−1|+τ2).

The values of the sought functions at the (n−1)-st and n-th time stages are considered
as known when computing the (n + 1)-st stage. The nonlinear term G is linearized
using what we call internal iterations (translating the Picard’s idea to the case of
differential equations), i.e., we perform successive iterations for u and w on the (n+1)-
st stage, starting with initial conditions from the already computed n-th stage.
The following non-uniform grid is used in the x−direction

xi = sinh[ĥx(i− nx)], xNx+1−i = −xi, i = nx + 1, . . . , Nx + 1, xnx = 0,

where Nx is an odd number, nx = (Nx + 1)/2, ĥx = Dx/Nx, and Dx is selected in
a manner to have large enough computational region. The grid in the z−direction is
defined in the same way.
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Because of the localization of the wave profile, the boundary conditions can be set
equal to zero, when the size of the computational domain is large enough. The initial
conditions are created using the best-fit approximation provided in [5]. The coupled
system of equations (3) is solved by the Bi-Conjugate Gradient Stabilized Method
with ILU preconditioner [9].

Numerical experiments. Denote by us(x, y; c) the best-fit approximation of
the stationary translating (with speed c) localized solutions, obtained in [5]

us(x, z; c) = f(x, z) + c2 [(1− β1)ga(x, z) + β1gb(x, z)]
+ c2 [(1− β1)h1(x, z) + β1h2(x, z)] cos [2 arctan(z/x)] ,

where the formulas for the functions f, ga, gb may be found in [5]. For t = 0, the first
initial condition is obvious: u(x, z, 0) = us(x, z; c), and the second initial condition
may be chosen as u(x, z,−τ) = us(x, z; c).
In the next examples solutions for β1 = 3, β2 = 1, α = 1 are presented.

Example 1. The first example is for a phase speed c = 0.27. The basic grid has
161×161 points in the region [−20, 20]2, τ = 0.1. The results are for computations in
fixed coordinates, for the moving frame coordinate system with upwind approximation
of wtz, for the moving frame coordinate system with central differences approximation
of wtz, for finer grid with 321×321 points and τ = 0.05, and for a larger computational
region with 641× 641 points in [−200, 200]2, τ = 0.1. The behaviour of the solution
is almost the same in all cases.
For t < 10 the solution stays near the center of the moving coordinate system and
behaves like a soliton, i.e., preserves its shape, although its maximum slightly de-
creases. For larger times the solution transforms into a diverging propagating wave.
As the structure is moving the weaves are not concentric – just like when we throw
a stone in a pond at an angle. The evolution of the solution, as well as values of the
maximum of the solution umax and the trajectory of the maximum zmax (ymax for
fixed coordinates) are shown in Fig.1.

Example 2. In Fig.2 results for c = 0.28 are presented. For t < 10 the solution stays
near the center of the moving frame coordinate system and behaves like a soliton,
i.e., preserves its shape, although its maximum slightly varies. For larger times the
solution turns to grow and blows-up for t ≈ 20. The results for the fixed and moving
frame coordinate system are very similar.
The results from the Experiments 1 and 2 show that the mechanism for having a
balance between the nonlinearity and dispersion is present, but the solution is not
robust (even when it is stable as a time stepping process) and eventually takes the
path to the attractor presented by the propagating wave.

Example 3. In order to show that the lack of robustness is a intrinsically 2D effect
rather than due to the imperfections of the scheme, we use the exact solution for the
1D case [2] as initial data:

u(x, z, 0) := usech(x) = (1− c2)
1.5
α

sech2
(
0.5x

√
(1− c2)/(β2 − β1c2)

)
.
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Figure 1: Evolution of the solution for c = 0.27, the maximum u(0, zmax), and the
trajectory of the maximum.

The boundary conditions on z = −20 and z = 20 are u(x,±20, t) := usech(x).
The maximum of the difference between the numerical and the exact solution ∆u :=
max |u−usech| and the order of convergence l are shown in Table 1. As it is seen,
the results confirm both the solitonic behaviour of the 1D solution and the second
order convergence of the difference scheme (3). The central difference and upwind
approximations of utz lead to practically the same values in the numerical solution.
The comparison between the moving frame and fixed grid computations shows that
the latter produces larger errors on non-uniform grids, but smaller errors on uniform
grids.

Conclusion. A difference scheme in a moving frame coordinate system is designed
for the investigation of the time evolution of the localized solutions of the 2D Boussi-
nesq Paradigm Equation (BPE). The grid is non-uniform and the truncation error
is second order in space and time. The results obtained for the time evolution of
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Figure 2: Evolution of the solution for c = 0.28, the maximum u(0, zmax), and the
trajectory of the maximum.

supposedly stationary propagating waves for different phase speeds are very similar
to those in [7, 8] – for phase speeds 0 6= c ≤ 0.27, the initially localized wave disperses
in the form of ring-wave expanding to infinity. Respectively, for c ≥ 0.28 the initial
evolution resembles a stationary propagation, but after some period of time a blow-
up of the solution takes place. The results are in good agreement with [6], where a
similar (c = 0.3) threshold is established for the appearance of the blow-up.
The moving frame coordinate system helps us to keep the localized structure in the
center of the coordinate system, where the grid is much finer. It also reduces the
effects of the reflection from the boundaries, and thus allows us to use a smaller
computational box.
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Table 1: Convergence in space and time for c = 0.27
t = 4 t = 8 t = 12

τ Nx+1 ∆u l ∆u l ∆u l

moving frame, non-uniform grid

0.1 160 1.36e-3 5.04e-3 1.70e-2

0.05 320 3.56e-4 1.93 1.32e-3 1.93 4.44e-3 1.94

fixed grid

0.1 160 1.81e-3 6.78e-3 2.42e-2

0.05 320 4.69e-4 1.95 1.75e-3 1.95 6.21e-3 1.96

moving frame, uniform grid

0.1 160 1.05e-2 3.36e-2 1.13e-1

0.05 320 2.66e-3 1.98 8.41e-3 2.00 2.74e-2 2.04

fixed uniform grid

0.1 160 1.00e-2 2.82e-2 8.61e-2

0.05 320 2.56e-3 1.97 7.18e-3 1.97 2.15e-2 2.00
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