A New Conservative Finite Difference Scheme for Boussinesq Paradigm Equation

N. Kolkovska, M. Dimova

Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Sofia, Bulgaria, e-mail: natali@math.bas.bg

Third International Conference on Application of Mathematics in Technical and Natural Sciences, Albena, 2011

- Boussinesq Paradigm Equation
 - Introduction
 - Properties to the BPE
- Numerical method
 - Finite Difference Scheme
 - Analysis of FDS
 - Corollaries
- Numerical results
 - Preliminaries
 - Tables
 - Graphics

Introduction

In the present work we study the Cauchy problem for the Boussinesq Paradigm Equation (BPE)

$$\frac{\partial^2 u}{\partial t^2} = \Delta u + \beta_1 \Delta \frac{\partial^2 u}{\partial t^2} - \beta_2 \Delta^2 u + \alpha \Delta f(u), \quad x \in \mathbb{R}^n, \ t > 0,$$
$$u(x,0) = u_0(x), \quad \frac{\partial u}{\partial t}(x,0) = u_1(x),$$

on the unbounded region \mathbb{R}^n with asymptotic boundary conditions $u(x,t) \to 0$, $\Delta u(x,t) \to 0$ as $|x| \to \infty$, where Δ is the Laplace operator, α , β_1 and β_2 are positive constants.

This is a 4-th order equation in x and t on unbounded region with non-linearity contained in the term $f(u) = u^2$.

Referencies

BPE appears in the modeling of surface waves in shallow waters.

For $\beta_2 > 0$ the problem is well-posed in the sense of Hadamar

- the derivation of BPE- Christov C.I., Wave motion, 34, 2001
- Xu&Liu (2009) existence of a global weak solution; sufficient conditions for both the existence and the lack of a global solution.
- Polat&Ertas (2009) local and global solution, blow-up of solutions under different conditions for the nonlinear function f(u).

We assume that the functions u_0 , u_1 and f(u) satisfy some regularity conditions so that a unique solution for BPE exists and is smooth enough.

theoretical study of numerical methods for 'good'BE (BPE with $\beta_1=0$)

- finite difference method- Ortega, Sanz-Serna, Numerische Math., 1990, 58
- finite element method, optimal error estimates- A. Pani, Saranga, Nonlinear Analysis, 29, 1997;
- pseudospectral method- Ortega, Sanz-Serna, Math. Comp., 1991, 57; for the damped BE- S. Choo, Comm. Korean Math. Soc., 13, 1998;

numerical simulations and physical interpretations - 1D, 2D:

- Christov, C.I., Wave motion, 34, 2001; Christov, Velarde, Intern. J Bifurcation Chaos, 4, 1994;
- Chertock, A., Christov, C., Kurganov, A.
- Christou, M., Christov, C., AIP, 1186, 2009
- Christov, C., Kolkovska, N., Vasileva, D., LNCS, 6046, 2011;
- Kolkovska, N., LNCS, 6046, 2011; AIP, 2010

Properties to the BPE

Let $\|\cdot\|$ denote the standard norm in $L_2(\mathbb{R}^n)$. Define the energy functional

$$E(u(t)) = \left\| (-\Delta)^{-1/2} \frac{\partial u}{\partial t} \right\|^2 + \beta_1 \left\| \frac{\partial u}{\partial t} \right\|^2 + \left\| u \right\|^2 + \beta_2 \left\| \Delta u \right\|^2 + 2 \int_{R^n} F(u) dx$$

with

$$F(u) = \alpha \int_0^u f(s) ds$$

Theorem (Conservation law)

The solution u to Boussinesq problem satisfies the following energy identity

$$E\left(u(t)\right)=E\left(u(0)\right).$$

We obtain similar energy identities for the solutions of the FDS employed in the discretization of BPE.

Notations

- Domain $\Omega = [-L_1, L_1] \times [-L_2, L_2]$, L_1, L_2 sufficiently large;
- a uniform mesh with steps h_1 , h_2 in Ω : $x_i = ih_1$, $i = -M_1$, M_1 ; $y_i = jh_2$, $j = -M_2$, M_2 ;
- τ the time step, $t_k = k\tau, k = 0, 1, 2, ...$;
- mesh points (x_i, y_i, t_k) ;
- $v_{(i,j)}^k$ denotes the discrete approximation $u(x_i, y_j, t_k)$;
- notations for some discrete derivatives of mesh functions:

•
$$v_{\times,(i,j)}^k = (v_{(i+1,j)}^k - v_{(i,j)}^k)/h_1;$$
 $v_{\bar{\times},(i,j)}^k = (v_{(i,j)}^k - v_{(i-1,j)}^k)/h_1;$

•
$$v_{\bar{x}x,(i,j)}^k = \left(v_{(i+1,j)}^k - 2v_{(i,j)}^k + v_{(i-1,j)}^k\right)/h_1^2;$$

•
$$v_{\bar{t}t,(i,j)}^k = \left(v_{(i,j)}^{k+1} - 2v_{(i,j)}^k + v_{(i,j)}^{k-1}\right)/\tau^2;$$

- $\Delta_h v = v_{\bar{x}x} + v_{\bar{y}y}$ the 5-point discrete Laplacian.
- $(\Delta_h)^2 v = v_{\bar{x}x\bar{x}x} + v_{\bar{y}y\bar{y}y} + 2v_{\bar{x}x\bar{y}y}$ the discrete biLaplacian

Whenever possible the arguments of the mesh functions $_{(i,j)}^k$ are omitted.

Finite Difference Schemes

In approximation of $\Delta_h v$ and $(\Delta_h)^2 v$ we use v^{θ} – the symmetric θ -weighted approximation to $v^k_{(i,j)}$:

$$v_{(i,j)}^{\theta,k} = \theta v_{(i,j)}^{k+1} + (1-2\theta)v_{(i,j)}^k + \theta v_{(i,j)}^{k-1}, \ \theta \in R.$$
 for approximation of non-linear term $f(u(x_i,y_j,t_k))$ we use

•

$$f_2(v^k) = 2 \frac{F(0.5(v^{k+1} + v^k)) - F(0.5(v^k + v^{k-1}))}{v^{k+1} - v^{k-1}}, \quad (1)$$

• in 2010:

$$f_1(v^k) = \frac{F(v^{k+1}) - F(v^{k-1})}{v^{k+1} - v^{k-1}}, \quad F(u) = \alpha \int_0^u f(s) ds.$$
 (2)

Note that in the case under consideration function f(v) is a polynomial of v, thus the integral F(v) used in f_1 , f_2 is explicitly evaluated!

Implicit (with respect to the nonlinearity) scheme

$$v_{\bar{t}t}^k - \beta_1 \Delta_h v_{\bar{t}t}^k - \Delta_h v^{\theta,k} + \beta_2 (\Delta_h)^2 v^{\theta,k} = \Delta_h f_2(v^k). \tag{3}$$

Initial conditions

$$\begin{aligned} v_{(i,j)}^{0} &= u_0(x_i, y_j), \\ v_{(i,j)}^{1} &= u_0(x_i, y_j) + \tau u_1(x_i, y_j) \\ &+ 0.5\tau^2 (I - \beta_1 \Delta_h)^{-1} \left(\Delta_h u_0 - \beta_2 (\Delta_h)^2 u_0 + \alpha \Delta_h f(u_0) \right) (x_i, y_j). \end{aligned}$$

The equations, boundary and initial conditions form a family of finite difference schemes.

Algorithm

$$\left(v^{k+1} - 2v^k + v^{k-1} \right) / \tau^2 - \beta_1 \Delta_h \left(v^{k+1} - 2v^k + v^{k-1} \right) / \tau^2$$

$$- \theta \Delta_h v^{k+1} - (1 - 2\theta) \Delta_h v^k - \theta \Delta_h v^{k-1}$$

$$+ \beta_2 \theta (\Delta_h)^2 v^{k+1} + \beta_2 (1 - \theta) (\Delta_h)^2 v^k + \beta_2 \theta (\Delta_h)^2 v^{k-1}$$

$$= 2\Delta_h \frac{F(0.5(v^{k+1} + v^k)) - F(0.5(v^k + v^{k-1}))}{v^{k+1} - v^{k-1}}$$

The inner iterations for evaluation of v^{k+1} start from v^k . They stop when the relative error between two successive iterations is less than a given threshold $\epsilon = 10^{-13}$.

- 1D case 5-diagonal linear system of equations
- 2D case splitting procedure and 5-diagonal linear systems in each direction

Analysis of the nonlinear schemes

Preliminaries:

the space of mesh functions which vanish on ω ; the scalar product at time t^k with respect to the spatial variables $\langle v,w\rangle=\sum_{i,j}h_1h_2v_{(i,j)}^{(k)}w_{(i,j)}^{(k)};$

operators
$$A = -\Delta_h$$

$$B = I - \beta_1 \Delta_h + \tau^2 \theta(-\Delta_h + \beta_2(\Delta_h)^2);$$

A, B are self-adjoint positive definite operators.

Operator form of the schemes:

$$Bv_{\bar{t}t} + Av + \beta_2 A^2 v = -Af_2,$$

 $A^{-1}Bv_{\bar{t}t} + v + \beta_2 Av + f_2 = 0$

(derived after applying A^{-1})

The energy functional E_h^L (obtained from the linear part of the equation) at the k-th time level is

$$\begin{split} E_h^L(v^{(k)}) &= \\ \left\langle A^{-1}v_t^{(k)}, v_t^{(k)} \right\rangle + \beta_1 \left\langle v_t^{(k)}, v_t^{(k)} \right\rangle + \tau^2(\theta - 1/4) \left\langle (I + \beta_2 A)v_t^{(k)}, v_t^{(k)} \right\rangle \\ &+ 1/4 \left\langle v^{(k)} + v^{(k+1)} + \beta_2 A(v^{(k)} + v^{(k+1)}), v^{(k)} + v^{(k+1)} \right\rangle \end{split}$$

The full discrete energy functional is (including the non-linearity)

$$E_h(v^{(k)}) = E_h^L(v^{(k)}) + 2 \left\langle F(0.5(v^{(k+1)} + v^{(k)})), 1 \right\rangle$$

Theorem (Discrete conservation law)

The solution to the implicit scheme satisfies the energy equalities

$$E_h(v^{(k)}) = E_h(v^{(0)}), \qquad k = 1, 2, \dots$$

i.e. the discrete energy is conserved in time.

$$\theta > \frac{1}{4} - \frac{\beta_1}{\tau^2 ||I + \beta_2 A||}.$$
(4)

Note that if parameter θ satisfies (4), then functional $E_h^L(v^k)$ is nonnegative and can be viewed as a norm. Such combined norms depending on the values of solution on several layers are typical for three-layer schemes.

The local truncation error of implicit scheme is $O(|h|^2 + \tau^2)$.

Theorem (Convergence of the Implicit Scheme)

Let $f(u) = u^2$ and the parameter θ satisfies (4). Assume that the solution u to BPE obeys $u \in C^{4,4}\left(\mathbb{R}^2 \times (0,T)\right)$ and the solution v to the finite difference scheme (3) is bounded in the maximal norm. Let M be a constant such that

$$M \geq \max_{i,j,s \leq k} \left(|u(x_i, y_j, t_s)|, \left| \frac{\partial^2 u}{\partial t^2}(x_i, y_j, t_s) \right|, |v_{i,j}^{(s)}| \right)$$

and τ be sufficiently small, $\tau < (2C_2M)^{-1}$. Then v converges to the exact solution u as $|h|, \tau \to 0$ and the following estimate holds for the error z = y - u:

$$(z^{(k)}, z^{(k)}) + (Az^{(k)}, z^{(k)}) \le Ce^{Mt_k} (|h|^2 + \tau^2)^2.$$
 (5)

The main feature of Theorem is the established second order of convergence in discrete W_2^1 norm, which is compatible with the rate of convergence of the similar linear problem.

Corollary

- (i) The convergence of the solution to FDS with $\theta \geq 0.25$ to the exact solution is of second order when |h| and τ go independently to zero.
- (ii) For the scheme with $\theta=0$ the convergence of the numerical solution to the exact solution is of second order when |h| and τ go to 0 provided $\tau^2<\frac{4}{9}\frac{\beta_1}{\beta_2}h^2$.

Corollary

Under the assumptions of the main Theorem the FDS admits the following error estimate in the uniform norm (z = y - u):

$$\begin{split} \max_{i} |z_{i}^{(k)}| &< Ce^{Mt_{k}} \left(|h|^{2} + \tau^{2} \right), \qquad d = 1; \\ \max_{i,j} |z_{i,j}^{(k)}| &< Ce^{Mt_{k}} \sqrt{\ln N} \left(|h|^{2} + \tau^{2} \right), \qquad d = 2. \end{split}$$

The above estimates are optimal for the 1D case and *almost* optimal (up to a logarithmic factor) for the 2D case.

- The boundedness of the exact solution u to the BPE on the time interval [0, T] is a main assumption in the convergence theorems.
- BPE may have both bounded on the time interval $[0, \infty)$ solutions or blowing up solutions
- ullet the L_{∞} norm of the exact solution is included in the exponent in the right-hand sides of the error estimates
- if u blows up at a moment T_0 , $T_0 > T$, then: $||u||_{L_{\infty}[0,T]}$ will be big; the term e^{MT} will be big; the convergence will slow up!
- additional restriction on the time step in the convergence theorem is

$$au < (2C_2M)^{-1}, M \ge ||u||_{L_{\infty}[0,T]}.$$

In any case the FDS should be applied with very small τ 's if one would like to evaluate the solution in a neighborhood of the blow up moment.

Preliminaries

An analytical solution of the 1D equation (one solitary wave):

$$u(x, t; x_0, c) = \frac{3}{2} \frac{c^2 - 1}{\alpha} \operatorname{sech}^2 \left(\frac{x - x_0 - ct}{2} \sqrt{\frac{c^2 - 1}{\beta_1 c^2 - \beta_2}} \right),$$

where x_0 is the initial position of the peak of the solitary wave,

- Parameters: $\alpha = 3$, $\beta_1 = 1.5$, $\beta_2 = 0.5$, c is the wave speed.
- Initial conditions for one solitary wave or two solitary waves:

$$u(x,0) = u(x,0;-40,2) + u(x,0;50,-1.5)$$

$$\frac{du}{dt}(x,0) = u(x,0;-40,2)_t + u(x,0;50,-1.5)_t$$

- Two conservative implicit schemes with $\theta=0.5$; inner iterations until relative error $<\epsilon$, $\epsilon=10^{-13}$.
 - 'old' (2010), f₁
 - 'new' (2011), f₂

Tables

Rate of convergence and errors, case of one solitary wave

Table:
$$\beta_1 = 1.5$$
, $\beta_2 = 0.5$, $\alpha = 3$, $c = 2$, $x \in [-40, 120]$, $T = 40$.

$h = \tau$	Rate 'old'	Rate 'new'	Er. 'old'	Er. 'new'	'old'/'new'
0.2	_	_	0.265115	0.144106	1.83
0.1	1.8836	1.9411	0.071849	0.037527	1.91
0.05	1.9720	1.9852	0.018315	0.009478	1.93
0.025	1.9929	1.9961	0.004601	0.002376	1.94
0.0125	1.9966	1.9961	0.001153	0.000596	1.93

$$E_1 = ||\tilde{u} - u_{[h]}||, \quad E_2 = ||\tilde{u} - u_{[h/2]}|| \quad \text{Rate} = \log_2(E_1/E_2)$$

$$\text{Error} = \max_{0 \le i \le N} |\tilde{u}_i - u_{[h],i}|$$

Rate of convergence and errors, case of two solitary waves

Table:
$$\beta_1 = 1.5$$
, $\beta_2 = 0.5$, $\alpha = 3$, $c_1 = 2$, $c_2 = -1.5$, $x \in [-160, 170]$, $T = 80$.

$h = \tau$	Rate 'old'	Rate 'new'	Er. 'old'	Er. 'new'	'old'/'new'
0.1	_	_	_	_	_
0.05	1.9634	1.9819	0.126497	0.066214	1.91
0.025	1.9931	2.0000	0.032210	0.016692	1.93
0.0125	2.1730	2.1789	0.007785	0.004034	1.93

Error =
$$E_1^2/(E_1 - E_2)$$
, $E_1 = ||u_{[h]} - u_{[h/2]}||$, $E_2 = ||u_{[h/2]} - u_{[h/4]}||$

- The calculations confirm the schemes are of order $O(h^2 + \tau^2)$.
- For one soliton and two solitary waves the 'new' scheme is about 2 times more precise than the 'old' implicit scheme.

With respect to the error magnitude the 'new' scheme with RHS f_2 performs twice better than the 'old' scheme with RHS f_1 !

Justification: Consider the right-hand side of the FDS. We expand f_1 , f_2 in Taylor series about the point (x_i, t^k) and get

$$f_{1}(u(x_{i}, t^{k})) = f(u(x_{i}, t^{k})) + \tau^{2} R_{1} + O(\tau^{3}),$$

$$f_{2}(u(x_{i}, t^{k})) = f(u(x_{i}, t^{k})) + \tau^{2} R_{2} + O(\tau^{3}),$$

$$R_{1} = \frac{1}{2} \alpha \frac{\partial f}{\partial u}(x_{i}, t^{k}) \frac{\partial^{2} u}{\partial t^{2}}(x_{i}, t^{k}),$$

$$R_{2} = \frac{1}{4} \alpha \frac{\partial f}{\partial u}(x_{i}, t^{k}) \frac{\partial^{2} u}{\partial t^{2}}(x_{i}, t^{k}).$$

Thus, $R_1 = 2R_2$. This has essential impact on the error, when the solution has large derivatives $(f(u) = u^3)!$

parameteres: $\beta_1=1.5$, $\beta_2=0.5$, $\alpha=3$

Figure: Iteraction of two solitons: $c_1 = 1.2$, $c_2 = -1.5$.

《□》《圖》《意》《意》 毫

Graphics

parameters: $\beta_1 = 1.5$, $\beta_2 = 0.5$, $\alpha = 3$

Figure: Iteraction of two solitons: $c_1 = 1.9$, $c_2 = -1.5$.

$$\beta_1 = 1.5$$
, $\beta_2 = 0.5$, $\alpha = 3$

Figure: Iteraction of two solitons: $c_1 = -c_2 = -2.2$, $t^* \approx 27$, t^* - blow up time

Thank you for your attention!

