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Motivation

• Boussinesq equation is the first model for surface waves in shallow fluid layer
that accounts for both nonlinearity and dispersion. The balance between the
steepening effect of the nonlinearity and the flattening effect of the dispersion
maintains the shape of the waves;

J. V. Boussinesq, Théorie des ondes et des remous qui se propagent le long
d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans
ce canal des vitesses sensiblement pareilles de la surface au fond, Journal de
Mathématiques Pures et Appliquées 17 (1872) 55–108.

• In the 60s it was discovered that these permanent waves can behave in many
instances as particles and they were called solitons by Zabusky and Kruskal;

N. J. Zabusky, M. D. Kruskal, Interaction of ‘solitons’ in collisionless plasma
and the recurrence of initial states, Phys. Rev. Lett. 15 (1965) 240–243.
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• A plethora of deep mathematical results have been obtained for solitons in the
1D case, but it is of crucial importance to investigate also the 2D case, because
of the different phenomenology and the practical importance;

• The accurate derivation of the Boussinesq system combined with an

approximation, that reduces the full model to a single equation, leads to

the Boussinesq Paradigm Equation (BPE)

utt = ∆ [u− F (u) + β1utt − β2∆u] ,

F (u) := αu2 or F (u) := α(u3 − σu5),

u is the surface elevation, β1 > 0, β2 > 0 - dispersion coefficients,

α > 0 - amplitude parameter, β2 = α = 1 without loosing of generality.

C. I. Christov, An energy-consistent dispersive shallow-water model, Wave
Motion 34 (2001) 161–174.
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• 2D BPE admits stationary translating soliton solutions, which can be constructed
using either finite differences, perturbation technique, or Galerkin spectral
method;

J. Choudhury, C.I. Christov, 2D solitary waves of Boussinesq equation. APS
Conference Proceedings 755 (2005), 85–90.

C. I. Christov, Numerical implementation of the asymptotic boundary conditions
for steadily propagating 2D solitons of Boussinesq type equations, Math. Comp.
Simulat. 82 (2012) , 1079–1092.

C. I. Christov, J. Choudhury, Perturbation solution for the 2D shallow-water
waves, Mech. Res. Commun. 38 (2011) 274–281.

C.I. Christov, M.T. Todorov, M.A. Christou, Perturbation solution for the 2D
shallow-water waves. AIP Conference Proceedings 1404 (2011), 49–56.

M.A. Christou, C.I. Christov, Fourier-Galerkin method for 2D solitons of
Boussinesq equation, Math. Comput. Simul. 74 (2007) 82–92.
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• It is of utmost importance to investigate the properties of these solutions when
they are allowed to evolve in time and to answer the question about their
structural stability, i.e., what is their behaviour when used as initial conditions
for time-dependent computations of the Boussinesq equation;

• To obtain reliable knowlegde about the time evolution of the stationary soliton
solutions, it is imperative to develop different techniques for solving the unsteady
2D BPE;

• Some preliminary results for quadratic nonlinearity in

A. Chertock, C. I. Christov, A. Kurganov, Central-upwind schemes for the
Boussinesq paradigm equation. Computational Science and High Performance
Computing IV, NNFM, 113, 267–281 (2011).

C.I. Christov, N. Kolkovska, D. Vasileva, On the Numerical Simulation of
Unsteady Solutions for the 2D Boussinesq Paradigm Lecture Notes Computer
Science 6046 (2011), 386–394.

C.I. Christov, N. Kolkovska, D. Vasileva, Numerical Investigation of Unsteady
Solutions for the 2D Boussinesq Paradigm Equation, 5th Annual Meeting of the
Bulgarian Section of SIAM, BGSIAM’10 Proceedings (2011), 11–16.
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Numerical approaches for solving BPE

Approach A1.

v(x, y, t) := u− β1∆u,

vtt =
β2

β1
∆v +

β1 − β2

β2
1

(u− v)−∆F (u).

The following implicit time stepping is designed

vn+1
ij − 2vn

ij + vn−1
ij

τ2
=

β2

2β1
Λ
[
vn+1

ij + vn−1
ij

]
− ΛG(un+1

ij , un
ij, u

n−1
ij )

+
β1 − β2

2β2
1

[un+1
ij − vn+1

ij + un−1
ij − vn−1

ij ],

un+1
ij − β1Λun+1

ij = vn+1
ij , i = 1, . . . , Nx, j = 1, . . . , Ny,

τ is the time increment, Λ = Λxx + Λyy is the difference approximation of the
Laplace operator ∆ on a uniform or non-uniform grid,
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G(un+1
ij , un

ij, u
n−1
ij ) is an approximation to the nonlinear term F (u):

G(un+1
ij , un

ij, u
n−1
ij ) =

2[g((un+1
ij + un

ij)/2)− g((un
ij + un−1

ij )/2)]

un+1
ij − un−1

ij

,

where g(u) =
∫ u

0
F (s) ds. The nonlinear term G is linearized using Picard

method, i.e., we perform successive iterations for u and v on the (n+1)-st stage,
starting with initial condition from the already computed n-th stage.

The unconditional stability of the scheme, the convergence and the conservation
of the energy are shown in

N. Kolkovska, Two Families of Finite Difference Schemes for Multidimensional
Boussinesq Equation. AIP Conference Series, 1301 (2010), 395–403.

N. Kolkovska, Convergence of Finite Difference Schemes for a Multidimensional
Boussinesq Equation, LNCS 6046 (2011), 469–476.

N. Kolkovska, M. Dimova, A new conservative finite difference scheme for
Boussinesq paradigm equation, Cent. Eur. J. Math. 10(3) (2012) 1159–1171.
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Uniform and non-uniform grids on the computational domain Ωh = [−L1, L1]×
[−L2, L2] are used

xi = −L1 + ihx, i = 0, . . . , Nx + 1, hx = 2L1/(Nx + 1),
yj = −L2 + jhy, j = 0 . . . , Ny + 1, hy = 2L2/(Ny + 1),

xi = sinh[ĥx(i− nx)], xNx+1−i = −xi,

i = nx + 1, . . . , Nx + 1, xnx = 0,

yj = sinh[ĥy(j − ny)], yNy+1−j = −yj,

j = ny + 1, . . . , Ny + 1, yny = 0,

where Nx, Ny are odd numbers, nx = (Nx + 1)/2, ny = (Ny + 1)/2 and

ĥx = 2Dx/(Nx + 1), ĥy = 2Dy(/Ny + 1). The numbers Dx and Dy are selected
in a manner to have L1 = sinh(Dx) and L2 = sinh(Dy).
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The boundary conditions can be set equal to zero, because of the localization of

the wave profile. The second set of b.c.’s used here are the asymptotic boundary

conditions

x
∂u

∂x
+ y

∂u

∂y
≈ −2u, x

∂v

∂x
+ y

∂v

∂y
≈ −2v,

√
x2 + y2 � 1.

The first of these asymptotic boundary conditions is approximated as

un+1
i,Ny+1 = un+1

i,Ny−1 +
hy

Ny
+ hy

Ny−1

yNy

[
− 2un+1

i,Ny
− xi

hx
i + hx

i−1

(un+1
i+1,Ny

− un+1
i−1,Ny

)
]
,

un+1
Nx+1,j = un+1

Nx−1,j +
hx

Nx
+ hx

Nx−1

xNx

[
− 2un+1

Nx,j −
yj

hy
j + hy

j−1

(un+1
Nx,j+1 − un+1

Nx,j−1)
]
,

i = 0, . . . , Nx, j = 0, . . . , Ny. The approximation of the second asymptotic
boundary condition is done in the same way.
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The first initial condition

u(x, y, 0) = u0(x, y), v(x, y, 0) = u0(x, y)− β1∆u0(x, y)

is approximated as

u0
ij = u0(xi, yj), v0

ij = u0
ij − β1∆u0(xi, yj).

For the second unitial condition

ut(x, y, 0) = u1(x, y), vt(x, y, 0) = u1(x, y)− β1∆u1(x, y)

the approximations

(u1
ij − u−1

ij )/(2τ) = u1(xi, yj), (v1
ij − v−1

ij )/(2τ) = u1(xi, yj)− β1∆u1(xi, yj)

are used and the corresponding finite difference equation is modified for t = τ .

The coupled system of equations is solved by the Bi-Conjugate Gradient Stabilized
Method with ILU preconditioner.
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Approach A2.

B

(
un+1

ij − 2un
ij + un−1

ij

τ2

)
= Λun

ij − β2Λ2un
ij + ΛG(un+1

ij , un
ij, u

n−1
ij ),

B = I − (β1 + θτ2)Λ + θτ2β2Λ2.

Here I is the identity operator, Λ2 = (Λxxxx + 2Λxxyy + Λyyyy) is

the discrete biLaplacian. In approximations to Λu and Λ2u θ-weighted

approximation to un
ij is used: uθ,n

ij = θun+1
ij + (1− 2θ)un

ij + θun−1
ij .

An O(|h|2 + τ2) approximation to the second initial condition is given by

u1
i,j = u0(xi, yj) + τu1(xi, yj) +

τ2

2(I − β1Λ)
(
Λu0 − β2Λ2u0 + ΛF (u0)

)
(xi, yj).

The boundary conditions un+1
ij = 0, Λun+1

ij = 0 for i = 0, Nx + 1 or
j = 0, Ny + 1 are used here.
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The operator B is replaced by the the factorized operator B̃ = B1B2B3, where

B1 = (I−θτ2Λxx+θτ2β2Λxxxx), B2 = (I−θτ2Λyy+θτ2β2Λyyyy), B3 = (I−β1Λ).

The factorized scheme

B1B2B3

(
un+1

ij − 2un
ij + un−1

ij

τ2

)
= Λun

ij − β2Λ2un
ij + ΛG(un+1

ij , un
ij, u

n−1
ij )

is obtained by the regularization method, is second order convergent in space and
time, preserves the discrete energy and is unconditionally stable for θ ≥ 1/2:

N. Kolkovska, M. Dimova, A new conservative finite difference scheme for
Boussinesq paradigm equation, Cent. Eur. J. Math. 10(3) (2012) 1159–1171.

The theoretical results are confirmed numerically in the 1D case in

M. Dimova, N. Kolkovska, Comparison of some finite difference schemes for
Boussinesq paradigm equation, LNCS 7125 (2012), 215–220.
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The factorized scheme can be split to a sequence of three simpler schemes. Since
the scheme is nonlinear we apply Picard method for the linearization.

Step 1: Solve the problem for the unknown w
(1)
ij :

B1w
(1)
ij = Λun

ij − β2Λ2un
ij + αΛG(un+1

ij , un
ij, u

n−1
ij ), i 6= 0, Nx + 1,

w
(1)
ij = 0, Λxxw

(1)
ij = 0, i = 0, Nx + 1.

Step 2: Define the unknown w
(2)
ij as a solution of the following problem:

B2w
(2)
ij = w

(1)
ij , j 6= 0, Ny + 1,

w
(2)
ij = 0,Λyyw

(2)
ij = 0, j = 0, Ny + 1.

Step 3: Compute w
(3)
i,j by solving

B3w
(3)
ij = w

(2)
ij , i 6= 0, Nx + 1, j 6= 0, Ny + 1,

w
(3)
ij = 0, i = 0, Nx + 1 or j = 0, Ny + 1.
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Step 4: Finally, compute the solution:

un+1
ij = 2un

ij − un−1
ij + τ2w

(3)
ij .

The discrete operators B1 and B2 are one-dimensional, i.e., the solution of the first
problem is reduced to a sequence of 1D problems on the rows of the domain Ωh,
while for the second problem we have a sequence of 1D problems on the columns
of Ωh. For both problems the resulting systems of linear algebraic equations
are five-diagonal with constant matrix coefficients and we apply a nonmonotonic
Gaussian elimination with pivoting:

Christov, C.I.: Gaussian elimination with pivoting for multidiagonal systems.
Internal Report, University of Reading, 4 (1994)

The third problem is solved by a Conjugate Gradient type Method specially designed
for the discrete Laplacian equation:

Samarskii, A.A., Vabishchevich, P.N.: Numerical Methods for Solving Inverse
Problems of Mathematical Physics. Walter de Gruyter, 2007.
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Numerical experiments

Let us(x, y; c) be the best-fit approximation to the stationary translating with
velocity c solution of BPE, obtained in

C. I. Christov, J. Choudhury, Perturbation solution for the 2D shallow-water waves,
Mech. Res. Commun. 38 (2011) 274–281.

C.I. Christov, M.T. Todorov, M.A. Christou, Perturbation solution for the 2D

shallow-water waves. AIP Conference Proceedings 1404 (2011), 49–56.

us(x, y; c) = fs(x, y)+c2gs(x, y;β1)+c2hs(x, y;β1) cos [2 arctan(y/x)] .

The parameters β2 and σ are set to β2 = 1 and σ = 3/16 or σ = 0.95.

The initial conditions

u0(x, y) := us(x, y; c), u1(x, y) := −cus
y(x, y; c),

correspond to a solution moving along the y-axis with the velocity c.
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In the numerical experiments β1 = 3, β2 = 1, α = 1;

Two different uniform grids in the domain x, y ∈ [−25, 25]2 with 5002, and

10002 grid points respectively;

On the coarse grid τ = 0.1, on the fine grid τ = 0.05;

A nonuniform grid in the region [−250, 250]2 with 5002 grid points and
τ = 0.1;

A uniform grid in [−25, 25]2 with 5002 grid points and τ = 0.1, using the
asymptotic boundary conditions.

(i) The case of quadratic nonlinearity, F (u) = αu2

The previous numerical results show that the behaviour of the solution significantly
changes when the velocity c ∈ [0.2, 0.3]. That is why we are focusing on these
values of c.
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Example 1. c = 0.2
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As it is seen, for t > 8 the solution cannot keep the form, and transforms into
a propagating wave. For t < 8, the solution not only moves with a velocity,
close to c = 0.2, but also behaves like a soliton, i.e., preserves its shape, albeit
its maximum decreases slightly. For larger times, the solution transforms into a
diverging propagating wave with a front deformed in the direction of propagation.

The behaviour of the solution is the same on all grids and for all times steps, and
does not depend on the type of the boundary conditions used (the trivial one or
asymptotic). The approach A2 produces slightly different results for the maximum
of the solution and its position on the coarse grid, but on the fine grid the results
are very close to those obtained by A1.
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Example 2. c = 0.26
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For t < 10 the solution moves with a velocity, very close to c = 0.26, and behaves
like a soliton. For larger times the solution transforms into a diverging propagating
wave, except in the case of A2 on the coarser grid, where the soliton keeps its
form till t < 20. But on the finer grid A2 leads to a solution, very close to those,
produced by A1 on all grids and with both boundary conditions.
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Example 3. c = 0.27 and c = 0.28
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The results computed for c = 0.27 and c = 0.28 show that the behaviour of all A1
solutions and the A2 solution on the finer grid is similar – the solution keeps its
form and moves with the prescribed velocity till t ≈ 10. After that it transforms
into a diverging wave for c = 0.27 or blows-up for c = 0.28. On the coarser grid
the A2 solution blows-up for c = 0.27.

The results from these experiments confirm once again that a mechanism for having
a balance between the nonlinearity and dispersion is present, but the solution is
not robust (even when it is stable as a time stepping process) and takes the path
to the attractor presented by the propagating wave for c ≤ 0.27 or blows-up for
c ≥ 0.28.

These results were a motivation for investigating BPE with a different nonlinear
term.

(ii) The case of qubic-quintic nonlinearity, F (u) = α(u3 − σu5)
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Example 4. σ = 3/16, c = 0.3

Fifth Conference on Numerical Analysis and Applications, June 15-20, 2012 - p. 25/33



Fifth Conference on Numerical Analysis and Applications, June 15-20, 2012 - p. 26/33



0 1 2 3 4 5 6 7 8
0

0.4

0.8

1.2

t

u m
ax

maximum of the solution

 

 

A1, h=τ=0.1
A1, h=τ=0.05
A2, h=τ=0.1
A2, h=τ=0.05
A1, large region
A1, asympt. b.c.

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

t

y m
ax

trajectory of the maximum

 

 

A1, h=τ=0.1
A1, h=τ=0.05
A2, h=τ=0.1
A2, h=τ=0.05
A1, large region
A1, asympt. b.c.
0.3*t

The solution cannot keep its form even for small times, and transforms into a
propagating wave, which is almost concentric for t > 8. The maximum of the
solution moves with a velocity, much faster than c = 0.3. The behaviour of the
solution is the same on all grids and for all times steps, and does not depend on
the type of the boundary conditions used.
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Example 5. σ = 3/16, c = 0.6
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The results are very similar to those in the previous example, i.e., the solution
cannot keep its form and transform into a diverging wave. Slightly different results
are obtained for the maximum of the A2 solution on the coarse grid, but on the
fine grid the results are closer to those for A1.

Example 6. σ = 0.95, c = 0.3 or c = 0.6

The results for σ = 0.95 are very similar to the already presented results for
σ = 3/16. Let us note that the investigated here 2D solutions of BPE with qubic-
quintic nonlinearity do not blow-up even for larger values of c, but unfortunately
they seem to be less structurally stable in comparison with the 2D solutions of
BPE with quadratic nonlinearity.

Fifth Conference on Numerical Analysis and Applications, June 15-20, 2012 - p. 29/33



σ = 0.95, c = 0.3
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σ = 0.95, c = 0.6
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Conclusion

We compared the results obtained by the aproach A1 with these obtained by A2
for quadratic and qubic-quintic nonlinearity and showed that they are in good
agreement with each other. In the case of quadratic nonlinearity we confirmed
the results obtained in previous works – the solution preserves its shape for small
times, but for larger times it either disperses in the form of decaying ring wave or
blows-up. The threshold for the appearance of blow-up seems to be near c ≈ 0.28.
For qubic-quintic nonlinearity the solution does not blow-up even for relatively large
values of c, but is much less stable and transforms into a diverging propagating
wave.
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Some papers and presentations about BPE may be found at

http://www.math.bas.bg/~nummeth/boussinesq/

Thanks for your attention!

Fifth Conference on Numerical Analysis and Applications, June 15-20, 2012 - p. 33/33


