Experimental Study of Matrix Multiplication on MultiCore
Processors

P. D. Michailidis, K. G. Margaritis

Matrix computations is one of the most important computational tasks in scientific
computing. Two well-known parallel versions are Cannon’s algorithm and the ScalL.A-
PACK outer product algorithm. Typically, parallel implementations work well on
2D processor grids: input matrices are sliced horizontally and vertically into square
blocks; there is a one-to-one mapping of blocks onto physical resources; several com-
munications can take place in parallel, both horizontally and vertically. Even better,
most of these communications can be overlapped with (independent) computations.
All these characteristics render the matrix product kernel quite amenable to an effi-
cient parallel implementation on 2D processor grids.

However, algorithms based on a 2D grid (virtual) topology are not well suited for
multicore architectures. In particular, in a multicore architecture, memory is shared,
and data accesses are performed through a hierarchy of caches, from shared caches to
distributed caches. We need to revisit the parallel implementations of matrix compu-
tations in the context of data partitioning in order to improve the parallel execution
on multicore architectures. This work present three parallel implementations of two
fundamental matrix computation kernels such as matrix - vector multiplication and
matrix multiplication on multicore processors. These parallel implementations are
based on the three approaches of data partitioning among the available processing
units such as row-wise, column-wise and square block-wise decomposition. Further-
more, for each possible parallel implementation is analyzed experimentally using the
OpenMP programming environment on a machine with 4 Intel dual-core processors
- a total of 8 cores. More specifically, we examine the performance results (i.e. exe-
cution times and speedups) of the proposed parallel implementations for matrix sizes
ranging from 200x200 to 5000x5000 and different number of threads ranging from 2
to 8.

Also, this work we study how to model the performance of the proposed implemen-
tations to multicore architectures by taking memory access costs into account. More
specifically, we present our effort to quantify and model each parallel implementation
according to a performance model. The performance model of an implementation
depends on two main aspects: the computational cost and the communication cost.
In the case of multicore, communications are performed through direct read/write op-
erations in a common memory address shared by two or more threads. To determine
the computational cost we use an analytical model based on the number of operations
and their cost in CPU cycles. Similarly, to predict the communication cost we model
the memory access times using different methods according to its behavior - linear or
non-linear. The proposed performance model validates against experimental results
and it shows that the model is able to predict the parallel performance slightly even if
the general behavior is correct. Finally, the proposed analytical prediction model can
be used to predict the performance of two matrix computations for any problem size

A-1



(i.e. matrix size), number of available processors/cores and processor characteristics.

A-2



