Explicit Runge–Kutta Schemes and Finite Elements with Symmetric Stabilization for First-Order Linear PDE Systems

E. Burman, A. Ern and M. A. Fernández

We analyze explicit Runge–Kutta schemes in time combined with stabilized finite elements in space to approximate evolution problems with a first-order linear differential operator in space of Friedrichs-type. For the time discretization, we consider explicit second- and third-order Runge–Kutta schemes. We identify a general set of properties on the space stabilization, encompassing continuous and discontinuous finite elements, under which we prove stability estimates using energy arguments. Then, we establish L^2 -norm error estimates with quasi-optimal convergence rates for smooth solutions in space and time. These results hold under the usual CFL condition for third-order Runge–Kutta schemes and any polynomial degree in space and for secondorder Runge–Kutta schemes and first-order polynomials in space. For second-order Runge–Kutta schemes and higher polynomial degrees in space, a tightened 4/3-CFL condition is required. Numerical results are presented for smooth and rough solutions. The case of finite volumes is briefly discussed.