New Conjectures in the Hausdorff Geometry of Polynomials

Bl. Sendov

Let $D(C(p) ; R(p))$ be the smallest disk containing all zeros of the polynomial $p(z)=$ $\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)$. Half a century ago, we conjectured that for every zero z_{k} of $p(z)$, the disk $D\left(z_{k} ; R(p)\right)$ contains at least one zero of the derivative $p^{\prime}(z)$. In this paper a stronger conjecture is announced and proved for polynomials of degree $n=3$. A number of other conjectures are announced, including a variation of the Smale's mean value conjecture.

