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This paper studies the problem of learning an unknown function f from
given data about f . The learning problem is to give an approximation f̂ to f
that predicts the values of f away from the data. There are numerous settings
for this learning problem depending on (i) what additional information we
have about f (known as a model class assumption), (ii) how we measure
the accuracy of how well f̂ predicts f , (iii) what is known about the data
and data sites, (iv) whether the data observations are polluted by noise.
Although the settings for the results are very general, the featured model
assumption is that f is a solution of a (parametric) PDE and belongs to a
compact manifold of the possible solutions or to a unit ball of a Banach space
that contains this manifold.

A mathematical description of the optimal performance possible (the
smallest possible error of recovery) is known in the presence of a model class
assumption. Under standard model class assumptions, it is shown in this
paper that a near optimal f̂ can be found by solving a certain discrete over-
parameterized optimization problem with a penalty term. Here, near optimal
means that the error is bounded by a fixed constant times the optimal er-
ror. This explains the advantage of over-parameterization which is commonly
used in modern machine learning. The main results of this paper prove that
over-parameterized learning with an appropriate loss function gives a near
optimal approximation f̂ of the function f from which the data is collected.
Quantitative bounds are given for how much over-parameterization needs to
be employed and how the penalization needs to be scaled in order to guar-
antee a near optimal recovery of f . An extension of these results to the case
where the data is polluted by additive deterministic noise is also given.
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