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Schwartz’s original method was proposed in 1869, which considered the
Poisson equation with Dirichlet boundary conditions in a domain consisting
of a circle and an overlapping square. Nowadays this approach provides
powerful tools for efficient parallel solution of large-scale systems of algebraic
equations arising from the discretization of partial differential equations. Two
kinds of preconditioners are constructed in this way: overlapping and non-
overlapping domain decomposition (DD).

We consider the second order elliptic equation —Au = f in Q C R,
d = 2,3, equipped with appropriate boundary conditions on I' = 0€2. As-
sume that the finite element method is applied for numerical solution of
the problem using linear elements on a quasi-uniform triangulation 7y, thus
obtaining the linear system Au = f. We now assume that {{2;}!", is a non-
overlapping partitioning of () with interface v C R9~!. The stiffness matrix
A is written in the form
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Ap = Diag (Ay, As, -+, Ay), the blocks A; correspond to the subdomains
Q,1=1,2,---,m, A, - to the interface, and S is the Schur complement.

Then following new non-overlapping DD preconditioner CH5% is analyzed
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Here C)55 (A) is the best uniform rational approximation of degree k of

A2 A is the discrete Laplacian corresponding to T, N+, ¢ > 0 is a scalling
parameter. The BURA based non-overlapping DD preconditioner has opti-
mal computational complexity. Key to the theory is the spectral equivalence
between the energy norm associated with the Steklov-Poincaré operator on
v and the corresponding Sobolev norm of index 1/2. Estimates are indepen-
dent of the geometry of . The theoretical results are illustrated by numerical
experiments.



