Non-overlapping domain decomposition methods of optimal computational complexity

N. Kosturski, S. Margenov, Y. Vutov

Schwartz's original method was proposed in 1869, which considered the Poisson equation with Dirichlet boundary conditions in a domain consisting of a circle and an overlapping square. Nowadays this approach provides powerful tools for efficient parallel solution of large-scale systems of algebraic equations arising from the discretization of partial differential equations. Two kinds of preconditioners are constructed in this way: overlapping and nonoverlapping domain decomposition (DD).

We consider the second order elliptic equation $-\mathcal{A}u = f$ in $\Omega \subset \mathbb{R}^d$, d = 2, 3, equipped with appropriate boundary conditions on $\Gamma = \partial \Omega$. Assume that the finite element method is applied for numerical solution of the problem using linear elements on a quasi-uniform triangulation \mathcal{T}_h , thus obtaining the linear system $A\mathbf{u} = \mathbf{f}$. We now assume that $\{\Omega_i\}_{i=1}^m$ is a nonoverlapping partitioning of Ω with interface $\gamma \subset \mathbb{R}^{d-1}$. The stiffness matrix A is written in the form

$$A = \begin{pmatrix} A_D & A_{D\gamma} \\ A_{\gamma D} & A_{\gamma} \end{pmatrix} = \begin{pmatrix} A_D \\ A_{\gamma D} & S \end{pmatrix} \begin{pmatrix} I & A_D^{-1} A_{D\gamma} \\ I \end{pmatrix},$$

 $A_D = Diag(A_1, A_2, \dots, A_m)$, the blocks A_i correspond to the subdomains Ω_i , $i = 1, 2, \dots, m, A_{\gamma}$ - to the interface, and S is the Schur complement. Then following new non-overlapping DD preconditioner $C_{DD,k}^{BURA}$ is analyzed

$$A = \begin{pmatrix} A_D \\ A_{\gamma D} & \sigma C_{1/2,k}^{BURA}(\Lambda) \end{pmatrix} \begin{pmatrix} I & A_D^{-1} A_{D\gamma} \\ & I \end{pmatrix}.$$

Here $C_{1/2,k}^{BURA}(\Lambda)$ is the best uniform rational approximation of degree k of $\Lambda^{1/2}$, Λ is the discrete Laplacian corresponding to $\mathcal{T}_h \cap \gamma$, $\sigma > 0$ is a scalling parameter. The BURA based non-overlapping DD preconditioner has optimal computational complexity. Key to the theory is the spectral equivalence between the energy norm associated with the Steklov-Poincaré operator on γ and the corresponding Sobolev norm of index 1/2. Estimates are independent of the geometry of γ . The theoretical results are illustrated by numerical experiments.