%Bl. Sendov %Sofia, BULGARIA %Abstract for the Conference O(h^4), 18-21 August, 1998, Sofia. \documentstyle[leqno,12pt]{article} \textwidth 6in \textheight 8.5in \topmargin 0in \oddsidemargin 0in \evensidemargin 0in \headsep 1.5cm \pagestyle{myheadings} \newtheorem{th}{Theorem}[section] \newtheorem{lem}{Lemma}[section] \newtheorem{cor}{Corollary}[section] \newtheorem{rem}{Remark}[section] \newtheorem{dfn}{Definition}[section] \newtheorem{prl}{Problem} \renewcommand{\theequation}{\thesection.\arabic{equation}} \newcommand{\address}[1]{\begin{center}{\sl #1}\end{center}} \newcommand{\dokend}{\hfill\hbox{vrule width 5pt hight 5pt depth 0pt}} \title{Orthonormal Systems of Fractal Functions} \author{Bl. Sendov } \date{} \begin{document} \maketitle \begin {abstract} Let $\{\phi_i\}_{i=0}^\infty$ be a orthonormal basis in the Hilbert space $F$, let $c_i(f) = \langle f,\phi_i\rangle;\; i=0, 1, 2, \dots, n$ be the Fourier coefficients of the function $f \in F$ and $$P_n(f;x) = \sum_{i=0}^n c_i(f) \phi_i(x).$$ The error of the approximation of $f$ by $P_n(f;\cdot)$ depend on $n$ and on the choice of the orthonormal system $\{\phi_i\}_{i=0}^\infty$. The aim of this lecture is to demonstrate a method for construction of a orthonormal basis adapted to a given function $f$, based on a generalization of the Walsh functions . The advantage of this adapted orthonormal basis is the improvement of the approximation for discontinuous functions and fractal functions. The motivation for this study is the application in the signal and image compression. \end{abstract} \today \end{document}