\documentstyle[12pt,a4]{article} % Abstract for the conference NMA'98 in Sofia \setcounter{page}{1} \textwidth 6in \textheight 8.5in \oddsidemargin 0pt \evensidemargin 0pt \topmargin 0pt \newcommand{\Oh}[1] {{\cal O} (#1)} \def\thefootnote{\fnsymbol{footnote}} \begin{document} \sloppy \begin{center} \bf AN \mbox{\large $\varepsilon$}-UNIFORM DEFFECT-CORRECTION METHOD FOR A PARABOLIC CONVECTION-DIFFUSION PROBLEM \footnote{ This work was supported in part by the Netherlands Organization for Scientific Research NWO, dossiernr. 047.003.017, and by the Russian Foundation for Basic Research, Grant N 98-01-00362.} \end{center} \begin{center} Pieter W.~Hemker\\ {\small\it CWI, Amsterdam, The Netherlands}\\[1.5ex] Grigorii I.~Shishkin\\ {\small\it Institute of Mathematics and Mechanics, Ekaterinburg, Russia}\\[1.5ex] Lidia P.~Shishkina\\ {\small\it Scientific Research Institute of Heavy Machine Building, Ekaterinburg, Russia} \end{center} \bigskip On the space-time domain $G=(0,1)\times (0,T]$ we consider the Dirichlet problem for the singularly perturbed parabolic equation with convective terms $$ \begin{array}{c} \displaystyle \left \{ \varepsilon a(x,t) \frac{{\partial}^2 }{{\partial x}^2} \displaystyle + b(x,t) \frac{\partial}{\partial x} - c(x,t) - \displaystyle p(x,t)\frac{\partial}{\partial t} \right \} u(x,t)= f(x,t), \ \ (x,t) \in G, \\[3ex] u(x,t) =\varphi(x,t), \quad (x,t)\in \partial G. \end{array} \eqno(1) $$ All the functions in (1) are assumed to be sufficiently smooth and bounded, moreover, $0