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ON THE NUMERICAL MODELING OF POLLUTION IN AIR, WATE R AND
SOIL
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Abstract: Model pollution in air, water and soil are generally described by a system of PDEs on
unbounded domain. Transformation of the independent variable is used to convert the problem for nonlinear
air pollutionon to finite computational domain. Then we construct a fitted finite volume difference scheme.
Some results from computations are presented.

Key words: Nonlinear air, water and soil pollution, Chemical reaction, Infinite domain, Log-
transformation, Degeneracy, Non-negativity preservation, Finite volume method.

INTRODUCTION

Environmental problems are becoming more and more important for our world and
their importance will even increase in the future. High pollution of air, water and soil may
cause damage of plants, animals and humans.

An air (or water, or soil) pollution model is generally described by a system of PDE-s
for calculating the concentrations of a number of chemical species (pollutants and
components of the air, water and soil that interact with the pollutant) in a large 3-D domain
(part of the atmosphere above the studied geographical region, rivers, channels etc.) [4],
[61, [7]
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where c,are the concentrations of the chemical species; u, v and w are wind velocities,

Ks, KJ and K? are the diffusion components; F, are the emissions; k,,, k,, are dry/wet

deposition coefficients and R(c,,C,,...,C;) are non-linear functions describing the
chemical reactions between the species under consideration [4], [6], [7]. Typical is the
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For such complex models operator splitting is very often applied in order to achieve
sufficient accuracy as well as efficiency of the numerical solution. Although the splitting is a
crucial step in efficient numerical treatment of the model, after discretization of the large
computational domain each sub-problem becomes itself a huge computational task. Here
we will concentrate on a non-stationary sub-model of a horizontal advection-diffusion with
chemistry, emissions and deposition, see [4], [5], [7]:
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aaczs(t,o)=5scs(t,0), J, = const =0, lime,(t,2)=0, tO[0,T], (2)
¢(0,2 =c,, z0O[0,»), s=12,...,S. (3)

The rest of the paper is organized as follows. In Section 2 we introduce the
transformed differential problem and derive the fitted finite volume discretization. In
Section 3 we present some results from computational experiments. At the end we
formulate some conclusions.
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THE TRANSFORMED PROBLEM AND NUMERICAL METHOD

In the numerical scheme it is not convenient to corporate the boundary condition at
infinity. For the simplest case of (1) (one linear advection-diffusion equation) discrete
transparent boundary conditions are constructed and analyzed in [3] while in [2] the
transformation
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is used. Here a is a stretching factor. Using transformation [4], the system (1) and the
respective boundary and initial conditions (2)—(3) in the computational domain become
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We have wused the notations r/(C,,C,,...,C.)=R/(c/(t,z($)),c,(t,z(é)),....cq(t, z(£))),
Co(t,6) = ci(t, z(S)), ko($) = K (z(<))

We rewrite the system (5) in divergent form:
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where f(t,¢) is a regularization of the Dlrac delta-function, s=12,...,S.

Considering the process of pollutant transport and diffusion in the atmosphere (and
in the water and the soil) the concentrations C,C,,...,Cg of pollutants can not be negative

if they are non-negative in the initial state t =0 for all £1(0,1). This property is called
non-negativity preservation and it is well studied for single heat-diffusion equation.
Let the interval [0,1] be subdivided into N intervals I, =[&,¢.,], i=12,...,N with

0=§<&<..<&, =1 and h=¢&,-&. We set &,,=05(¢,+&), &.,,=05(&+&,,),
ho=&,,— &, fori =2,3...,N.

A. Internal nodes. We integrate equation (8) on the cell [£_,,,,¢.,,,] and applying the
mid-point quadrature rule to all the integrals with exception to the second one we obtain
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Further at the derivation of the discrete equations we follow the methodology in [1], [2]. Let
us rewrite equation (9) in the form
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118



RESEARCH PEOPLE AND ACTUAL TASKS ON MULTIDISCIPLINA RY SCIENCES
24 — 28 JUNE 2015, LOZENEC, BULGARIA

p.=p,(C,) =a%(1- &Mk, (f) (2a25ks(f)—aw)cs. (11)

We need to derive an apprOX|mat|on of the continuous flux p, in the point ¢,,.,,
i =2,3,...,N—=1. To do this, we consider the two-point BVP

(Is,i+ﬂ2(1_ {Z)Vs' + Ms,iﬂjzvs) = 0’ {D Ii ’ Vs(gﬁ) = Cs,i’ Vs(giﬂ) = Cs,i+l (12)

Where Is(a = azks(g) ’ ms(f) = 2a2§(ks(4() —aw, Is,i+]JZ = Cs(giﬂjz)’ ms,i+]JZ = bs(giﬂjz) ' Integrating

equation from (12) yields the first-order linear equation. Solving this equation and using the
boundary conditions gives
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In a similar way we approximate p,,_,, for i =2,3,...,N. For approximation of p,,.,, we
solve the BVP

(e (L= OV M Vo) =My, Vi(E) =Coyy Vuléy) =0,
where I_S(E) =a’(1+ &)k () . After some calculation for the flux Py WE get

ps,N+]JZ = O'S[CS,NH (I_S,N+]JZ + rns,N+]JZ) _CS,N (_s N+1/2 ms N+]JZ)}

B. Boundary nodes. To approximate the boundary condition on the left vertical
boundary ¢ =0 we proceed as for the internal grid nodes, but integrating equation (8) on

the interval (i. e. in the semi-interval by &) to get

Cuhy _ iz b
5 2 T ¢a2)Piae (- &P+ (B +f,,).

From (13) for i =1 we get the apprOX|mat|on for p,,,. For (1-&)p,,, where & =0, using
the expression for p, (11) and the boundary conditon (6) we find
1~ &) p,, = a(dk,(0) —w)C,,. On the right vertical boundary & =1 we have C,,,, =0.

Finally, for the space approximation we obtain the ODE non-linear system of
equations for C;(t), s=12,...,S,i=12,...,N +1:
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In order to discretize the problem with respect to t we introduce the mesh 0=t <t,

<<ty =T, At =t ;- Then, the fully implicit scheme can be written in the form

CSJﬂ - CsJ j+ j+ j+ j+ + +

#% = _es,l,leJ,ll + es,l,zcé,zl +%[Bs(§(1’ Clj,ll’ Czj,ll’ CsJ 11) + f ! l} (14)
i

Cj+l CJ
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i

ClNu=0,s8=12..,S, (16)

where CJ =C((t;,$) . To solve the non-linear system (14)—(16) we have used Newton's

method, which leads to a linear system of equations.

RESULTS AND DISCUSSION

The components of the system are the nitric oxide (NO), nitrogen dioxide (NO,)
and ozone (O,), denoted by u,, U, and u, respectively. We assume that the nitrogen

dioxide is released at source locations and concentrations of nitric oxide are measured. A
simplified model of chemical reactions in the system is

NO - O,0'» NO,, NO,O'El. NO +0,, with rates k, =1000, k, = 2000.

To show the efficiency and usefulness of the discretization method, various test
problems with different choices of parameters were solved. In the numerical experiment
we approximate the Dirac-delta function by the function

4(5):%’ £0[& -2h,& +2h] and 0,60[& —2h,& +2n].

For the numerical results presented here, we have used the following functions and values
of the coefficients in the problem under consideration: S=3,K,(2) =1, K,(z) =K,(2) =5,
w=1, Q(t), Q(t)=1-t, Q,t)=0, Z =20, Zz =85 0,=9,=0,=0, T=1,
Co=Cyp =0, Cy=2,a=0.005, R =),,C +p,:C, S=12,3, where y, ==),, = Vs, =

2000, B,,;=-L,15=Bs15 =—1000. A part of these data are taken from [5]. Fig. 1, 2 and 3

show the numerical computed concentrations ¢, (t,2), c,(t,z) and c,(t,2).

We have used the Runge method for practical estimation of the rate of convergence
of the scheme with respect to the space variable at fixed value of t =T =1. We have used
three inserted grids with 100, 200 and 400 subintervals respectively by & and

At = At; =0.001. A part of the results from the calculations for the rate of convergence are
presented in the Table.

CONCLUSIONS AND FUTURE WORK

In this work we have considered a one-dimensional nonlinear problem of pollution in
air, water and soil. We have used a log-transformation that makes the original problem,
defined on a semi-infinite interval, to another one on the interval (0,1). We have derived a
fitted volume difference scheme that preserves the non-negativity property of the
differential problem solution as numerical experiments show. Detail experimental and
theoretical analysis will be very interesting.

Acknowledgements . This work was supported by the Bulgarian Fund of Sciences
under Grants No. FNI | 02/9-2014 and No. FNI |1 02/20-2014.

120



RESEARCH PEOPLE AND ACTUAL TASKS ON MULTIDISCIPLINA RY SCIENCES
24 — 28 JUNE 2015, LOZENEC, BULGARIA

{ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 | 0.07 | 008 | 0.09 | 010 | O.11 | 0.12 | 0.13
n1 11.04 9.27 7.63 6.16 4.89 3.84 3.04 2.49 226 | 3.08 | 008 |140 | 212 | 227
n2 11.04 9.28 7.63 6.16 4.89 3.84 3.04 2.46 2.07 140 | 125 | 054 | 157 | 213
n3 1.74 1.07 2.17 -1.67 5.15 3.84 3.04 2.46 2.07 140 | 125 | 054 | 157 | 213
{ 0.26 0.27 0.28 0.29 0.30 0.35 0.36 037 | 038 | 039 | 040 | 041 | 042 | 043
n1 23.97 19.62 | 17.23 | 14.96 | 12.79 | 4.00 2.90 2.15 1.89 199 | 167 | 119 | 159 | 1.69
n2 23.98 19.63 | 17.24 | 14.97 | 12.80 | 4.01 2.93 2.24 1.97 203 | 179 | 140 | 168 | 1.79
n3 2.01 2.00 1.94 0.44 5.25 2.57 2.06 1.79 1.82 148 | 279 | 217 | -1.96 | 1.64

o -~ n w s oo

0 t 0 g t 0 g

Fig. 1. ¢,(t,2). Fig. 2. c,(t,2). Fig. 3. c,(t,2).

REFERENCES

[1]. Chernogorova, T., L. Vulkov. 2014. Finite volume difference scheme for a model of
settling particle dispersion from an elevated source in a open-channel flow, Comp. and
Math. with Applications 67, 2099-2111.

[2]. Chernogorova, T., L. Vulkov. 2012. Finite volume difference scheme for a transformed
stationary air pollution problem, Amer. Inst. Phys. Conf. Proc. 1497, 176-183.

[3]. Dang, Q. A., M. Ehrhardt. 2006. Adequate numerical solution of air pollution problems
by positive difference schemes on unbounded domains, Math. and Comp. Modeling 44,
834-856.

[4]. Li, C., E.S. Wright. 2011. Modeling chemical reactions in rivers: a three component
reaction, Discrete and Cont. Dyn. Systems 7, 2, 377-384.

[5]. Mamonov, A., Y.-H. R. Tsai. 2013. Point source identification in non-linear advection-
diffusion-reaction systems, Inverse Problems, 29 (3):0350009.

[6]. Marchuk, G. I. 1986. Mathematical Models in Environmental Problems, Studies in
Math. and Appls. 16, North Holland.

[7]. Zlatev, Z., I. Dimov. 2006. Computational and Numerical Challenges in Environmental
Modeling, Elsevier, Amsterdam.

ABOUT THE AUTHORS

T. Chernogorova, FMI, Sofia University, 5, J. Bourchier Blvd., 1164 Sofia, Bulgaria,
E-mail: chernogorova@fmi.uni-sofia.bg

L. Vulkov, FNSE, Uiversity of Rousse, 8, Studentska str., 7017 Rousse, Bulgaria,
E-mail: lvalkov@uni-ruse.bg

121



