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Abstract

A new ordinary differential inequality without global solutions is proposed. Comparison
with similar differential inequalities in the well-known concavity method is performed. As
an application, finite time blow up of the solutions to nonlinear Klein–Gordon equation
is proved. The initial energy is arbitrary high positive. The structural conditions on the
initial data generalize the assumptions used in the literature for the time being.

1 Introduction

In a series of papers [5, 6, 7] Levine proves nonexistence of global solutions to the nonlinear
wave equation by means of the reduction of the wave equation to a differential inequality for a
functional of the solution. His results are improved by Straughan in [8] for positive initial energy.
In this way the finite time blow up of the solutions to many nonlinear dispersive equations can
be obtained as a consequence of the blow up results of the solutions to the differential inequality

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ 0, t ≥ 0, (1.1)

and the more general one

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ −βΨ(t), t ≥ 0. (1.2)

Here γ > 1, β > 0 are constants.
Later on, Kalantarov and Ladyzhenskaya [2] extend (1.1) to

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ −2δΨ(t)Ψ′(t)− µΨ2(t), t ≥ 0, (1.3)

while Korpusov [4] generalizes (1.2) to

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ −2δΨ(t)Ψ′(t)− βΨ(t), t ≥ 0, (1.4)

for some constants δ ≥ 0, µ ≥ 0.
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Applying inequalities (1.1)-(1.4) for special choice of the initial data Ψ(0) and Ψ′(0), finite
time blow up results for the solutions of Klein–Gordon and other dispersive equations are
obtained. A careful analysis of these applications shows that the stronger inequality

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ αΨ2(t)− βΨ(t), t ≥ 0, (1.5)

with α > 0 naturally appears instead of inequalities (1.1)-(1.4). In this study we are focus-
ing on an extension of the concavity method of Levine, based on inequality (1.5). We prove
nonexistence of global solutions to inequality (1.5) for a suitable class of initial data Ψ(0) and
Ψ′(0). As an application, we obtain finite time blow up results for the solutions to the Cauchy
problem of Klein–Gordon equation

utt −∆u+ u = f(u), (t, x) ∈ R+ × Rn, (1.6)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn. (1.7)

We consider very general nonlinear term f(u), satisfying either condition (H1) or (H2):

(H1) f(u) =

l∑
k=1

ak|u|pk−1u−
s∑
j=1

bj |u|qj−1u,

(H2) f(u) = a1|u|p1 +

l∑
k=2

ak|u|pk−1u−
s∑
j=1

bj |u|qj−1u,

where the constants ak, pk (k = 1, 2, . . . , l) and bj , qj (j = 1, 2, . . . , s) fulfil the conditions

a1 > 0, ak ≥ 0, bj ≥ 0 for k = 2, . . . , l, j = 1, . . . , s,

1 < qs < qs−1 < · · · < q1 < p1 < p2 < · · · < pl,

pl <∞ for n = 1, 2; pl <
n+ 2

n− 2
for n ≥ 3.

Throughout this paper for functions, depending on t and x, we use the following short notations:

‖u‖ = ‖u(t, ·)‖L2(Rn), ‖u‖1 = ‖u(t, ·)‖H1(Rn), (u, v) = (u(t, ·), v(t, ·)) =

∫
Rn
u(t, x)v(t, x) dx.

For Klein–Gordon equation with arbitrary high positive energy there are a few results con-
cerning finite time blow up of the weak solutions to (1.6), (1.7) with nonlinearities:

f(u) = u2 + u3, (1.8)

f(u) = a|u|p−1u, a > 0, p > 1 (1.9)

and more general nonlinearity f(u) satisfying

uf(u) ≥ (2 + ε)

∫ u

0

f(s) ds, ∀u ∈ R, ε > 0, (1.10)

see [3, 9, 10]. In [9] the blow up result is proved for problem (1.6), (1.7) and (1.10) under the
following assumptions on the initial data u0, u1:

(u0, u1) > 0, I(0) < 0,
ε

2(2 + ε)
‖u0‖2 ≥ E(0) > 0, (1.11)
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where I(0) is the Nehari functional, defined by

I(t) = I(u(t, ·)) = ‖u‖21 −
∫
Rn
f(u)u dx.

A similar blow up result is obtained in [10] for nonlinearity (1.9) provided

(u0, u1) ≥ 0, I(0) < 0,
p− 1

2(p+ 1)
‖u0‖2 > E(0) > 0. (1.12)

The proofs in [9, 10] are based on the well-known concavity method of Levine (see [2], [5]) and
the sign preserving property of the Nehari functional I(t) under the flow of (1.6), (1.7). Let us
note that the idea of the blow up results under conditions (1.11) and (1.12) and arbitrary high
positive energy comes from the paper of Gazzola and Squassina [1] for nonlinear wave equation
in a bounded domain.

A different technique for proving finite time blow up is suggested by Straughan in [8] for
the solutions of nonlinear wave equation with nonlinearity (1.10). For Klein–Gordon equation
a similar result is obtained in [3] for nonlinearity (1.8). In both papers, [3, 8], the main
assumptions on the initial data are:

(u0, u1) > 0,
1

2

(u0, u1)2

‖u0‖2
> E(0) > 0, (1.13)

which allow arbitrary high positive energy.
The goal of this study is to prove the finite time blow up of the solutions to (1.5) for a suitable

class of initial data Ψ(0), Ψ′(0). As an application, we improve the well-known results for
nonexistence of global solutions to Klein–Gordon in case of arbitrary high positive energy and for
a wide class of combined power–type nonlinearities (H1) or (H2). Under structural assumptions
on the initial data, that are more general than the assumptions used in the literature for the time
being, we obtain finite time blow up of the solutions to the Cauchy problem of Klein–Gordon
equation.

This article is structured as follows. In Section 2 we formulate the precise statements
for nonexistence of global solutions to ordinary differential inequalities, mainly used in the
applications. Section 3 deals with the proof of the main result, Theorem 3.1. In Section 4, as
an application of Theorem 3.1, finite time blow up of the solutions to Klein–Gordon equation
is obtained.

2 Preliminaries

For convenience we reformulate three generalizations of the Levine’s result [5], based on dif-
ferential inequalities (1.3), (1.2) and (1.4), respectively. The statements are suitably altered to
fit into the present context.

Lemma 2.1 (Kalantarov-Ladyzhenskaya [2]). Suppose that a nonnegative, twice-differentiable
function Ψ(t) satisfies on t ≥ 0 the inequality

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ −2δΨ(t)Ψ′(t)− µΨ2(t),

where γ > 1, δ ≥ 0 and µ ≥ 0 are constants.
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(i) If δ = µ = 0, Ψ(0) > 0 and Ψ′(0) > 0, then Ψ(t)→∞ for t→ t∗, where

t∗ ≤ t1KL =
Ψ(0)

(γ − 1)Ψ′(0)
<∞.

(ii) If δ + µ > 0, Ψ(0) > 0 and Ψ′(0) > −γ2(γ − 1)−1Ψ(0), then Ψ(t)→∞ for t→ t∗, where

t∗ ≤ t2KL =
1

2
√
δ2 + (γ − 1)µ

ln
γ1Ψ(0) + (γ − 1)Ψ′(0)

γ2Ψ(0) + (γ − 1)Ψ′(0)
<∞

and γ1,2 = −δ ±
√
δ2 + (γ − 1)µ.

Lemma 2.2 (Straughan [8], Korpusov [4]). Suppose that a nonnegative, twice-differentiable
function Ψ(t) satisfies on t ≥ 0 the inequality

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ −βΨ(t),

where γ > 1 and β > 0 are constants. If Ψ(0) > 0, Ψ′(0) > 0 and

β <
(2γ − 1)

2

Ψ′2(0)

Ψ(0)
,

then Ψ(t)→∞ for t→ t∗, where

t∗ ≤ tSK =
Ψ(0)

(γ − 1)
√

Ψ′2(0)− 2β
2γ−1Ψ(0)

<∞.

Lemma 2.3 (Korpusov [3]). Suppose that a nonnegative, twice-differentiable function Ψ(t)
satisfies on t ≥ 0 the inequality

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ −2δΨ(t)Ψ′(t)− βΨ(t),

where γ > 1, δ ≥ 0 and β ≥ 0 are constants. If Ψ(0) > 0 and

Ψ′(0) >
2δ

γ − 1
Ψ(0),

(
Ψ′(0)− 2δ

γ − 1
Ψ(0)

)2

>
2β

2γ − 1
Ψ(0),

then Ψ(t)→∞ for t→ t∗, where

t∗ ≤ tK =
Ψ(0)

(γ − 1)

√(
Ψ′(0)− 2δ

γ−1Ψ(0)
)2

− 2β
2γ−1Ψ(0)

<∞.

3 Main result

In the following theorem we prove nonexistence of global solutions to the new differential
inequality (1.5) under suitable conditions on the initial data. Let us emphasize that this in-
equality naturally appears in the analysis of the behaviour of the solutions to many nonlinear
dispersive equations.
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Theorem 3.1 (Main result). Suppose that a twice-differentiable function Ψ(t) satisfies on t ≥ 0
inequality (1.5), i.e.

Ψ′′(t)Ψ(t)− γΨ′2(t) ≥ αΨ2(t)− βΨ(t),

where γ > 1, α ≥ 0 and β > 0 are constants. If Ψ(0) > 0, Ψ′(0) > 0 and

β <
(2γ − 1)

2

Ψ′2(0)

Ψ(0)
+ αΨ(0), (3.1)

then Ψ(t)→∞ for t→ t∗ <∞.
More precisely:

(i) if αΨ(0)− β ≥ 0, then t∗ ≤ t∗1 =
Ψ(0)

(γ − 1)Ψ′(0)
<∞;

(ii) if αΨ(0)− β ≤ 0, then t∗ ≤ t∗2 =
Ψ(0)

(γ − 1)
√

Ψ′2(0)− 2β
2γ−1Ψ(0) + 2α

2γ−1Ψ2(0)
<∞.

Proof. Suppose that Ψ(t) is defined for t ∈ [0,∞). First, we prove that Ψ′(t) > 0 for every
t > 0. Since Ψ′(0) > 0, in order to obtain a contradiction, we suppose that Ψ′(t) > 0 for
t ∈ [0, t0), 0 < t0 <∞ and Ψ′(t0) = 0. After the substitution z(t) = Ψ1−γ(t) we have

z′(t) = (1− γ)Ψ−γ(t)Ψ′(t),
1

1− γ
Ψ1+γ(t)z′′(t) = Ψ′′(t)Ψ(t)− γΨ′2(t).

From (1.5) and the monotonicity of Ψ(t) for t ∈ (0, t0) we get the inequalities:

1

1− γ
Ψ1+γ(t)z′′(t) ≥ αΨ2(t)− βΨ(t) ≥ αΨ(t)Ψ(0)− βΨ(t)

≥ Ψ(t)

(
αΨ(0) +

2γ − 1

2

Ψ′2(0)

Ψ(0)
− β − 2γ − 1

2

Ψ′2(0)

Ψ(0)

)
= Ψ(t)

(
A− 2γ − 1

2

Ψ′2(0)

Ψ(0)

)
, (3.2)

where

A = αΨ(0) +
2γ − 1

2

Ψ′2(0)

Ψ(0)
− β.

From (3.1) we have A > 0.
Multiplying (3.2) with z′(t) < 0 we get for t ∈ (0, t0) the inequality

z′′(t)z′(t) ≥ −(γ − 1)

(
A− 2γ − 1

2

Ψ′2(0)

Ψ(0)

)
z

γ
γ−1 z′(t) (3.3)
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Integrating (3.3) from 0 to t0 we obtain the following impossible chain of inequalities:

0 =
1

2
z′2(t0) ≥1

2
z′2(0)− (γ − 1)2

2γ − 1

(
A− 2γ − 1

2

Ψ′2(0)

Ψ(0)

)(
z

2γ−1
γ−1 (t0)− z

2γ−1
γ−1 (0)

)
=

1

2
(γ − 1)2Ψ−2γ(0)Ψ′2(0) +

(γ − 1)2

2γ − 1
A(Ψ1−2γ(0)−Ψ1−2γ(t0))

− (γ − 1)2

2

Ψ′2(0)

Ψ(0)
Ψ1−2γ(0) +

(γ − 1)2

2

Ψ′2(0)

Ψ(0)
Ψ1−2γ(t0)

>
(γ − 1)2

2γ − 1
A(Ψ1−2γ(0)−Ψ1−2γ(t0)) > 0,

which gives a contradiction. Thus we prove that Ψ′(t) > 0 for every t > 0. Therefore Ψ(t) is a
strictly increasing function and Ψ(t) > 0 for for every t ≥ 0

(i) If αΨ(0) − β ≥ 0 then from the monotonicity of Ψ(t) it follows that αΨ(t) − β ≥ 0
for every t > 0. Hence Ψ(t) satisfies (1.1) and from Lemma 2.1(i) we get that Ψ(t) → ∞ for

t→ t∗ ≤ t∗1 = t1KL = Ψ(0)
(γ−1)Ψ′(0) .

(ii) If αΨ(0) − β ≤ 0 holds then we have A − 2γ−1
2

Ψ′2(0)
Ψ(0) ≤ 0. Hence after integration of

(3.3) we have for every t

1

2
z′2(t) ≥ 1

2
z′2(0)− (γ − 1)2

2γ − 1

(
A− 2γ − 1

2

Ψ′2(0)

Ψ(0)

)(
z

2γ−1
γ−1 (t)− z

2γ−1
γ−1 (0)

)
≥ 1

2
(γ − 1)2Ψ−2γ(0)Ψ′2(0) +

(γ − 1)2

2γ − 1

(
A− 2γ − 1

2

Ψ′2(0)

Ψ(0)

)
z

2γ−1
γ−1 (0)

=
(γ − 1)2

2γ − 1
AΨ1−2γ(0) > 0.

Since z′(t) < 0 it follows that

z′(t) ≤ −

√
2(γ − 1)2

2γ − 1
AΨ1−2γ(0)

and

z(t) ≤ −t

√
2(γ − 1)2

2γ − 1
AΨ1−2γ(0) + z(0).

Therefore, z(t)→ 0 for t→ t∗,

t∗ ≤ t∗2 = z(0)

(
2(γ − 1)2

2γ − 1
AΨ1−2γ(0)

)− 1
2

=

√
2γ − 1

γ − 1
Ψ(0)

(
2αΨ2(0) + (2γ − 1)Ψ′2(0)− 2βΨ(0)

)− 1
2

=
Ψ(0)

(γ − 1)
√

Ψ′2(0)− 2β
2γ−1Ψ(0) + 2α

2γ−1Ψ2(0)
,

or equivalently, Ψ(t)→∞ for t→ t∗, t∗ ≤ t∗2. Theorem 3.1 is proved.
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4 Applications

In this section we use Theorem 3.1 to prove finite time blow up of the solutions to Klein–Gordon
equation with arbitrary high positive energy.

We consider the Cauchy problem to Klein–Gordon equation, (1.6), (1.7), under the following
assumptions on the initial data:

u0(x) ∈ H1(Rn), u1(x) ∈ L2(Rn). (4.1)

Let us recall the well-known local existence result for problem (1.6), (1.7):

Theorem 4.1. Suppose (4.1) holds and f(u) satisfies either (H1) or (H2). Then there exists
a unique local weak solution to (1.6), (1.7) u(t, x) ∈ C([0, Tm); H1(Rn))

⋂
C1([0, Tm); L2(Rn))∩

C2([0, Tm); H−1(Rn)) on a maximal existence time interval [0, Tm). In addition for every t ∈
[0, Tm) the solution u(t, x) satisfies the conservation law

E(0) = E(t), (4.2)

where

E(t) := E(u(t, ·)) =
1

2

(
‖ut‖2 + ‖u‖2 + ‖∇u‖2

)
−
∫
Rn

∫ u

0

f(y) dy dx. (4.3)

Theorem 4.2. Suppose (4.1) holds and f(u) satisfies either (H1) or (H2). If

‖u0‖ 6= 0, (u0, u1) > 0, (4.4)

1

2

(p1 − 1)

(p1 + 1)
‖u0‖2 +

1

2

(u0, u1)2

‖u0‖2
> E(0) > 0, (4.5)

then the weak solution of (1.6), (1.7) blows up for a finite time t∗ <∞. More precisely:

(i) if
1

2

(p1 − 1)

(p1 + 1)
‖u0‖2 ≥ E(0), then t∗ ≤ t∗1 =

2

(p1 − 1)

‖u0‖2

(u0, u1)
<∞; (4.6)

(ii) if
1

2

(p1 − 1)

(p1 + 1)
‖u0‖2 ≤ E(0), then (4.7)

t∗ ≤ t∗2 =

√
2

(p1 − 1)

‖u0‖√
1
2

(p1−1)
(p1+1)‖u0‖2 + 1

2
(u0,u1)2

‖u0‖2 − E(0)
<∞. (4.8)

Proof. For function Ψ(t) = ‖u‖2 we have Ψ′(t) = 2(u, ut) and

Ψ′′(t) = 2‖ut‖2 + 2(u, utt) = 2‖ut‖2 − 2
(
‖u‖2 + ‖∇u‖2 − (u, f(u))

)
.

By means of conservation law (4.2), the following equality holds

(‖u‖2 + ‖∇u‖2 − (u, f(u))) =(p1 + 1)E(0)− (p1 + 1)

2
‖ut‖2 −

(p1 − 1)

2
(‖u‖2 + ‖∇u‖2)

− (p1 + 1)B(t),
(4.9)
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where B(t) is given by the expression

B(t) := B(u(t)) =

l∑
k=2

ak(pk − p1)

(pk + 1)(p1 + 1)

∫
Rn
|u|pk+1 dx+

s∑
j=1

bj(p1 − qj)
(qj + 1)(p1 + 1)

∫
Rn
|u|qj+1 dx

for both cases (H1) and (H2). Since pk > p1 > qj for k = 2, . . . , l and j = 1, . . . , s, it follows
that for every t ∈ [0, Tm)

B(t) ≥ 0 (4.10)

and B(t) ≡ 0 for ak = 0, k = 2, . . . , l and bj = 0, j = 1, . . . , s.
From (4.9), (4.10) and Hölder inequality we have for function u with ‖u‖ 6= 0 the following

estimates:

Ψ′′(t) = 2‖ut‖2 − 2(p1 + 1)E(0) + (p1 + 1)‖ut‖2 + (p1 − 1)(‖u‖2 + ‖∇u‖2) + 2(p1 + 1)B(t)

≥ (p1 + 3)‖ut‖2 − 2(p1 + 1)E(0) + (p1 − 1)‖u‖2

≥ (p1 + 3)
(u, ut)

2

‖u‖2
− 2(p1 + 1)E(0) + (p1 − 1)‖u‖2

Hence Ψ(t) satisfies on t ≥ 0 the differential inequality

Ψ′′(t)Ψ(t)− (p1 + 3)

4
Ψ′2(t) ≥ (p1 − 1)Ψ2(t)− 2(p1 + 1)E(0)Ψ(t). (4.11)

If we set γ = p1+3
4 > 1, α = (p1 − 1) > 0, β = 2(p1 + 1)E(0) > 0, then Theorem 3.1 can be

applied since Ψ(0) = ‖u0‖2 > 0, Ψ′(0) = 2(u0, u1) > 0 and condition (3.1) are fulfilled thanks
to condition (4.5) in Theorem 4.2. According to Theorem 3.1 function Ψ(t) = ‖u‖2 blows up for
a finite time t∗ and the upper bounds t∗1 and t∗2 are given by formulas (4.6) and (4.8) depending
on the sign of the expression αΨ(0)− β = (p1 − 1)‖u0‖2 − 2(p1 + 1)E(0). Thus Theorem 3.1 is
proved.

Remark 4.1. If f(u) satisfies either (H1) or (H2) and

1

2

(p1 − 1)

(p1 + 1)
‖u0‖2 +

1

2

(u0, u1)2

‖u0‖2
> E(0) > max

{
1

2

(p1 − 1)

(p1 + 1)
‖u0‖2,

1

2

(u0, u1)2

‖u0‖2

}
,

then the result in Theorem 4.2 is completely new. Let us note that in this case the conditions
of the blow up theorems in [3, 8, 9, 10] are not fulfilled and they can not be applied. In this
way we get a wider class of initial data for which the corresponding weak solution blows up in
a finite time.
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