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TAYLOR SERIES METHOD FOR SYSTEM OF
PARTICLES INTERACTING VIA
LENNARD-JONES POTENTIAL

Nikolai Shegunov, Ivan Hristov

March 9, Seminar in IMI,BAS,So�a
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Mathematical model
We consider the Hamiltonian :

H(p, q) = 1

2

N∑
i=1

1

m
pTi pi +

N−1∑
i=1

N∑
j=i+1

4ε[( σ

rij
)12 − ( σ

rij
)6]

rij = ‖qi − qj‖2 is the distance between i-th and j-th particles.
m, ε, σ are suitable constants depending on the atoms.
We normalize time and space this way:

t̃ =
t

σm1/2ε−1/2
, q̃ =

q

σ
Omitting tilde we have the normalized system:

ṗi = −
∂H

∂qi
= 24

N∑
j=1

(2(
1

rij
)14 − (

1

rij
)8)(qi − qj)

q̇i =
∂H

∂pi
= pi

pi and qi are vectors inR
d, d = 1, 2, 3 but we omit the arrow−→.

The only exception is next slide.
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Numerical method - Taylor Series Method

We need to calculate derivatives (with respect to time) of solution via
partial derivatives of H. For example for second derivatives we have

Let −→r = (−→q1 ,−→q2 , ...−→qN ,−→p1 ,
−→p2 , ...,

−→pN)
T

Explicit Taylor method

Implicit Taylor method
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For second derivatives in our case we have:

q̈i = ṗi = 24
N∑
j=1

(2(
1

rij
)14 − (

1

rij
)8)(qi − qj)

p̈i = 24
N∑
j=1

(−28(
1

rij
)16+8(

1

rij
)10)((qi − qj)T(pi−pj))(qi−qj)

+24
N∑
j=1

(2(
1

rij
)14 − (

1

rij
)8)(pi − pj)

Third derivatives are also easy to calculate but they have more sums.
We use them in our calculations.
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We denote explicit method that use �rst derivative with ex1.
This is actually Explicit Euler method.
Implicit method that use �st derivative is im1.
This is actually Implicit Euler.
The methods that use �rst and second derivatives are ex2 and im2.
The methods that use �rst,second and third derivatives
are ex3 and im3.
We also consider composition methods (half step with implicit (explicit)
and then half step explicit (implicit)).
We have in addition ex1 ◦ im1,im1 ◦ ex1, ex2 ◦ im2,
im2 ◦ ex2,ex3 ◦ im3,im3 ◦ ex3.

Let us mention that:
• ex1 ◦ im1=implicit midpoint rule (symplectic)
• im1◦ex1=trapezidual rule(not symplectic but also very good)
• Verlet method = one Seidel correction for im1 ◦ ex1
with explicit Euler with entire step as predictor.
Seidel correction means using already updated q for updating p.



D
ra
ft

6/25

JJ
II
J
I

Back

Close

Predictor-corrector scheme

We solve implicit method as predictor-corrector. Predictor is the
explicit formula of the same order. Corrections are with implicit formula.
For example for im2 we have.
Predictor:
r(0)(t+ τ ) = r(t) + τ ṙ(t) + τ 2

2
r̈(t)

Corrections:
r(k+1)(t+ τ ) = r(t) + τ ṙ(t+ τ )(k) − τ 2

2
r̈(t+ τ )(k)

This is simple iteration.

The derivatives of p depends on q and we can use
already updated q. This gives Seidel iteration which is actually better.
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Stopping criterion for iterative process

Let ∆(k) = max
i=1,...,N

‖ −→r i
(k) −−→r i

(k−1) ‖∞
is the increment of two successive approximations.
N is the number of particles. −→ri = (−→pi ,−→qi )

Following Ernst Hairer we iterate until
either ∆(k) = 0 or ∆(k) ≥ ∆(k−1) which indicates that increments
of the iteration start to oscillate due to roundo�.
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Discretization error
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Discretization error



D
ra
ft

10/25

JJ
II
J
I

Back

Close

Discretization error
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Stability on the test equation of linear oscillator

We have the Hamiltonian

H(p, q) =
1

2
p2 +

1

2
ω2q2, ω > 0

ṗ = −
∂H

∂q
= −ω2q

q̇ =
∂H

∂p
= p

Exact solution of the test initial problem is

(
p(t)
ωq(t)

)
=

(
cosωt − sinωt
sinωt cosωt

) (
p(0)
ωq(0)

)

As we expect growth matrices for di�erent methods
are with truncated cos and sin series elements!
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All composition methods give orthogonal matrices!
That means exactly conserving the energy for harmonic oscillator!
Remember that composition methods are
ex1 ◦ im1, im1 ◦ ex1, ex2 ◦ im2, im2 ◦ ex2
ex3 ◦ im3, im3 ◦ ex3.
For all of them we stay on the circle with small phase error of
corresponding order of the method!

For example the growth matrix A for ex1 ◦ im1 is:

A =

(
1 τω

2
−τω

2
1

)−1 (
1 −τω

2
τω

2
1

)
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Stability on the test equation of linear oscillator

Ex1 and ex2 are not stable for every choice of step τ !
The energy grows!

Im1 and im2 are stable for every choice of step τ !
But the energy decrease which is not physical!



D
ra
ft

14/25

JJ
II
J
I

Back

Close

Stability on the test equation of linear oscillator

In contrast to Ex1 and Ex2, Ex3 is stable for certain step sizes.
As calculations show ex3 method is conditionally stable: τω < 1.732

In some cases Ex3 could be a good choice of method.
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The experiments con�rm the conditionally stability of Ex3.
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Numerical experiments and results

We solve numerically two problems for our experiments.

1) Molecular analog of pendulum (two particles oscillator)

2) 12 particles in 8x8 box and periodic boundary conditions
(as the example from the book of Gould and Tabochnik
�An itroduction to computer simulation methods�).

The experiments show that all composition methods
behaves as symplectic, that is
The error in H is O(τ k).
The global error error is O(tτ k),k is the order of accuracy.
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Simple iteration versus Seidel

.
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Simple iteration versus Seidel
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Testing for accuracy of Im3 ◦ Ex3
Con�rming fourth order accuracy
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Testing for accuracy of Im3 ◦ Ex3
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Global error behavior for molecule oscillator, Im3 ◦ Ex3
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Long time integration for molecule oscillator, Im3 ◦ Ex3
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Long time integration for molecule oscillator, Im3 ◦ Ex3
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Long time integration for 12 particles in 8x8 box,

Im3 ◦ Ex3
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