Modeling Manakov Soliton Trains: Effects of External Potentials and Inter-channel Interactions
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1 Introduction

By now it 1s well known that the Complex Toda chain (CTC) models ade-
quately the N-soliton train dynamics for the perturbed (scalar) NLS equations
for various choices of the perturbation iR|u| [1], including the case iR|u| =
V(x)u, V(x) being an external potentials, see [3] and the references therein.
First we prove that the CTC models also the interactions of the Manakov
soliton trains [2]. In addition the perturbed CTC models Manakov soliton
trains also 1n external potentials or the one-dimensional Gross-Pitaevsky eq.:
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and in the presence of inter-channel interaction c; # 0, see [3, 4, 5].

e Check the validity of the CTC as a model for the N-soliton interactions of
the Manakov model;

e Analyze the effects of three types of external potentials: anharmonic, peri-
odic and wide-well:
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Vaw(x) = ch tanh(2vox + yg) — tanh(2vox — y;) ).
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e Test a criteria under which given the effect of the potential on the soliton
train can be viewed as an adiabatic perturbation, namely |Hy| < |Hp|

Hy = /_Oo dx V(x)(id',id)(x,t), Hy= /Oo dx <(ﬁi,ﬁx) — E(ﬁT,ﬁ)z) . (3)

2 Manakov solitons and the CTC model

Start with the (unperturbed) Manakov model, i.e. V(x) =0, ¢; = 0. The N-
soliton Manakov train is a solution of (1) determined by the initial condition:
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where the 2-component polarization vector 1s n; = (nk,le’ﬁk,nkae ’ﬁk) with
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real ny o and P o, (7i,,7;) = 1. The adiabatic approximation holds true if:
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In fact we have two different scales:
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The dynamical system that describes the evolution of the Manakov soliton
trains 18 [2]
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Thus we get the CTC:
dzqk — 16v2 [<_’ 1 > dk+1—"49k __ <_’ 7 > Qk_Qk—l} (8)
a2 0 [\k+1,1k/)€ R, Ng—1)€ ;

All terms in the right hand sides of the evolution equations for 7, are of the
order of €, so we can neglect the evolution of 7, and to approximate them with
their initial values. It is easy to see, that if all {7, ", 7;) = const # 0 then the
CTC (8) 1s a completely integrable dynamical system, just like the real Toda
chain.

e CTC models the soliton interactions for the VNLSE with any number of
components.

e The effect of the polarization vectors on the interaction comes into CTC
only through the scalar products mg; = (7i;,1,7x). Thus CTC is invariant
under the transformations u# — gou with g, constant 2 X 2 unitary matrix.

2.1 CTC and the Asymptotic Regimes of N-soliton Trains

CTC allows Lax representation L = [B, L], where
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Here the matrices (Ey,),; = OkpOng» and Ey, = O whenever one of the indices
becomes 0 or N+ 1 and
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Consequence of the Lax representation:

e CTC has N complex-valued integrals of motion: the eigenvalues of L: {, =
Ke+inNe, k=1,...,N.

e one can write down explicitly the solutions of CTC in terms of { &, rx}y_,
where 7, are the first components of the properly normalized eigenvectors
of LO

e The asymptotics of the solutions for t — =0 1s:
qi(t) = —2voGit — Bi+ O (™), (11)

1.e. —2K; are the asymptotic velocities of the solitons.

AFR The asymptotically free regime takes place if k; # k; for k # j, i.e.,
the asymptotic velocities are all different. Then we have asymptotically
separating, free solitons;

BSR The bound state regime takes place for K =k, =--- = ky =0, i.e., all N
solitons move with the same mean asymptotic velocity, and form a “bound
state”. The key question now will be the nature of the internal motions in
such a bound state: 1s it quasi-equidistant or not?

MAR a variety of intermediate situations, or mixed asymptotic regimes hap-
pen when one group (or several groups) of particles move with the same
mean asymptotic velocity; then they would form one (or several) bound
state(s) and the rest of the particles will have free asymptotic motion.
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Figure 1: Various asymptotic regimes of 5-soliton trains:
a) 1+1+1+1+1; b) 1+1+2+1; ¢) 2+1+2; d) 3+2;¢e) 5; f) 4+1

3 [Effects of External potentials

The results below extend our earlier ones [4, 5] on the perturbed CTC system:
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where y; = zx/(2Vp) + &. Below we consider the various choices of V(x).

3.1 The anharmonic and periodic potentials

These potentials for V;, > 0 (no matter how small) will always restrict the N-
soliton train into bound state regime. Here we have N;|u| = 0, E;[u]| = 0 and
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3.2 The interchannel interaction and the wide wells

Below we assume that the constants ¢ characterizing the interchannel interac-

tion 1s real. The corresponding integrals take the form N, = 0, &; = 0 and:
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Figure 2: Inter-channel interaction of three solitons in AFR regime

4 The criterium for adiabatically small potentials

The hypothesis is formulated as |Hy| < |Hp|, see eq. (3). Both integrals can
be evaluated through the parameters of the soliton train. For example, in the
case of anharmonic potential one gets:

v
N

2 7754
H =Y (4vV., =y Vi) .
Z( Vo) + 5. &) + 56574

(14)

The first remark is, that both |Hy| and |Hy| depend on the soliton parameters.
But while the leading term of |Hy| depends only on v, and L, |Hy| depends
substantially also on the positions &, of the solitons.

We evaluated the ratio |Hy|/|Hp| and found that if it is of the order of € then
the perturbed CTC matches very well the soliton trajectories of the perturbed
Manakov model. If this ratio is of the order of 1 then the potential strongly
prevails the soliton interactions and determines the soliton dynamics. Further
analysis 1s needed to confirm or disproof this hypothesis.
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Figure 3: a) Vi, = 0.000036:, T ~ 2.78%; b) Viy, = 0.000036 (x + 15)%, il ~7.64%:
g

Voer = Acos Zx: ¢) A = —0.0001, '|Vp|'~0047% d) A=

5 Conclusions

e The CTC describes adequately the Manakov soliton trains consisting of at

least 5 solitons up to distances about 10e~!;

e The PCTC describes adequately the effects of interchannel interactions and
adiabatically small potentials up to distances about 10~
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