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HAUSDORFF METRIC CONSTRUCTION
IN THE PROBABILITY MEASURES SPACE

SVLETLOZAR T. RACHEV

The aim of this paper is to carry out an analysis of the Lévy and Lévy— Prohorov metrics
as well of the uniform metrics and of other metrics in the space of probability measures. This
is achieved by comparing their metric structures with the structure of the Hausdorff distance.

Introduction. In the solution of a number of problems of probability the-
ory the method of metric distance functions has successfully been used for a
long time (Lé vy [9], Kolmogorov [8], Prohorov [ll], Esséen [5]
Strassen [20], Dudley [4], Zolotarev [23], Cambanis, Simons,
Stout [2]). The essence of this method is based on the knowledge of properties o
metrics in the space of random variables as well as on the principle according tf,
which in every problem of the approximating type a metric as a comparisoo
measure must be selected in accordance with the requirements to its propern
ties (Zolotarev [23]).

In this paper properties of Hausdorff metric structure are used to solve-
two well-known problems considered earlier by other authors.

The first problem deals with the analysis of the “minimal” property of
Lévy, Lévy — Prohorov and uniform metrics, as well of the other metrics
(Strassen [20], Dudley [4], Zolotarev [23]).

The second problem represents a generalization of the Lévy and Lévy—
Prohorov metric structure (Varadarajan[22], Zolotarev [23]).

Tlie results of this paper are essentially contained in Rachev [12, 13,
14, 15]. :

1. Probability metrics and their properties. We would like to start by
briefly mentioning the definitions and some properties of probability metrics
(for general acquaintance we recommend papers Zolotarev [23, 24, 25]).

Denote by ={X} a set of random variables defined in some probability
space (2, &, P) and taking values in a certain separable metric space (U, d)
and let (Z). be a space of joint distributions of all possible sets (X;, X, ..,
Xk) of random variables from Z.

In the space Z the mapping p: (%), — [0, oo] is called a probability me-
tric (or simply a metric) in the case when it possesses the metric properties
of “symmetry”, “triangle inequality” and the following analogue of the “iden-
tification” property (Zolotarev [23]):

(1.1) PX=Y)=1= X, ¥Y)=0.

The metric w(X, Y) is called simple if its value is completely determined
by the pair of marginal distributions £(X), £(Y) and a compound metric in
all remaining cases. In case of a simple metric (1.1) is equivalent to the con-
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dition £(X)=2(Y)=u(X, ¥)=0. If we require also the converse, i. e. p(X, Y)
=0 =>2(X)=2(Y) one obtains the usual concept of a metric, but only in
the space of marginal distribution (Z),. In this case we can use both forms
WX, Y) and p(L(X), £(Y)). : .

We give some examples of simple and compound metric in . The Ky
Fan compound metric (distance in probability):

H (X, Y)=ini{e>0: P(d(X, Y)>e)<g}.

The indicator compound metric i(X, Y)=E/{X3FY) (/ is the indicator function)’
The Lévy—Prohorov simple metric n(X, V)=inf {e>0: P(X ¢ A)<P(Y ¢ A%)+¢’
A ¢ B, where 8 is the system of all Borel sets in (U, d) and A*={u; d(u, 1)<e}
The simple distance in variation

o(X, Y)=sup{|P(X ¢ A)—P(Y ¢ A)|.

Every metric p in & is related to the so-called minimal metricp(X, Y) =
inf p(X, Y), where the infimum is taken over the set of all possible joint dis-
tributions £(X, Y)€(Z), of the random variables X, Y with fixed marginal
distribution #(X) and £(Y) (Zolotarev [23]).

The relationship between ) and m was established in the well-known pa-
per Strassen [20] (see also Dudley [4]). Strassen proved that

(1.2) H=m.
Dobrushin [3] established a similar relationship:
(1.3) i=o.

Recently, the notion of a minimal metric turned out to be a very usefull
one in such problems as continuity and stability of stochastic models (Zolo-
tarev [23 — 26]). In particular the inequality of the type W(X, Y)=vw(n(X, Y)
(the conditions on y being quite general) implies analogous inequality between
the minimal metrics (Zolotarev [23)).

(1.4 vi(X, V)=w(p(X, V).

Let (S, p) be a metric space with metric p, and 9(S) be the set of all
nonempty subsets of S. A Hausdorff distance (Hausdorff [6]) between two
elements of A(S) is defined as
1.5 ; = inf » Xa), inf , .

(1.5) 7y, G)=max {sup inf p(x,, xp), sup inf p(x, x9)}

Sendov and Penkov [16] defined the Hausdorff distance between ‘two
bounded functions on the real line R. They noticed also that for distribu-
tion functions the Lévy distance coincides with the Hausdorff distance.

2. Minimal metrics in the random variables space

2.1. Lévy metric and uniform distance in the distribution function
space. Let us denote by & — the set of distribution functions on the real
line R. The Lévy metric in the space § metrizes the weak topology.

Let as define, for every A>0, the Lévy metric as follows:

(21) Ly(F, G)=inf {e>0: G(x—Are)—s<sFAx)<G(x+Ae)+s, for all x¢ R}.
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Properties. 1) For every A>0, Ly(F, G) is a metric in § and L,=L,
where L is the usual Lévy metric;

2) On the interval (0, o), Ly(F, G) is a nonincreasing functions of A;
3) Take the uniform distance p(F, G) in .

p(F, G)y=sup {| F(x)—G(x)|, x€R}

and W(F, G)=sup {| F}({)—G~Y(¢)|, t ¢ [0, 1]}, where F~Y(¢)=sup {x:F(x)=t}.
Then we have

2.2) lim Ly(F, G)=p(F, G),
(2.3) lim AL,(F, G)=WI(F, G).

The following Theorems 1 and 1* give socme Hausdorff distance represen-
tation of the Lévy metric.
Theorem 1. For every A>0

2.9 Ly(F, G)=max ){cs(ug in(fkmax {% | x,—x2 |, Flxg)—G(xy)},

sup inf max {-|x;—xsl, G(x,)—Fx)}}.
£ € R X €R
In accordance to Sendov [17, 18] let us define the Hausdorff distance
between the bounded functions on R.
Suppose that for A>0, py(A;, Ag), Ay=(xp, Y1) As=(xg, yg) is the Min-
kowski distance in the plane:

1
(2.5) pr(Ay, Ap)=max { - | x;—x3l, | y1—Yal}-

If G,, G, are closed nonempty sets in the plane, then the Hausdorff distance
r(G,, G,) according to (1.5), is equal to

rn(G,, G,)=max {max min A, A,), msx min A,, Ay}
WGy, Gy)=m A{. ‘A._.(G,pl( 1 Q)Az(’G}E e o.p)"( 1 Ag)}

Denote be Fjp the set of all closed point sets on the plane which are bounded
and convex in relation of the x-axis and whose projections on the y-axis co-
incide with R. Let f(x) be a bounded function on R. The intersection f of all
set of Fp, containing the graph of f is called its complete graph. For every
A>0, let us define the Hausdorff distance between their complete graphs, i. e

n(f, & =n(f, 8.
Theorem 1* (Sendov, Penko V). For every A\>0 and F, G¢§

Ly(F, G)=n\(F, Q).
The proof is similar to the proof contained in Rachev [12] for the
case A=1.
Now, let us define in the space of random variables the following func-
tional Ka: For every A>0
KX, YV)=inf {e>0: P(X<x—MAe, Y=x)<E,
P(Y <x—Ag, X=x)=<¢, for all x¢R}.
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This functional has the following properties :
1) For every A>0, K)(X, Y) is a compound metric in &;
2) On the interval (0, o), Ki(X, Y) is a nonincreasing function of A;
3) Denote by A(X, Y), w(X, Y) the following metrics in &:

A(X, Y)=max {Su}e) P(X<x<Y), SL(!E P(Y<x=X)}
x € x

w(X, Y)=inf {e>0; P(X<x—¢g, Y=x)=0,
P(Y<x—e, X=x), for all x¢ R}.
Then the relations
li_r'rg)Kx(X, Y)=A(X, V), lim AK(X, V)=w(X, Y)

A—oco

are true;

4) The metrics K, A and w are weakly regular, i. e. for every triplet
of random variables X, Y, Z such that the pare X, Y and the random varia-
ble Z are independent one has Ky(X+Z, Y+2)=Ku(X, Y);

5) For every A>0 and for all ¢c4=0 we have: Ki(cX, cY)=Ku) (X, V),
A(cX, cY)=A(KX, V), w(cX, cY)=]|clw(X, Y), i. e. from 4) follows that K; is
a perfect (1, 0) metric; A is an ideal metric of order zero, while @ is of or-
der one. (The definitions of the notions perfect and ideal metrics are given
by Zolotarev [23];

Denote by a VV b=max(a, b).

6) For every A>0

(26) Lu(X, YIVLA(X, XVY)VLL(Y, XV)=K\(X, V),
@.7) AX, V)=p(X, XVY)Vp(Y, XVY).

From property (2.6) follows that Ki(X, Y)—O0 implies a weak convergence
L(X, Y)—0, L(X,VY, Y)—0, when n—co. The equality (2.7) shows that the
A — convergence is equivalent to a uniform convergence p(X,, V)—0p(X,VY,
Y, Y)—O0. From (2.6) and (2.7) follows that if Fy(x)=P(Y<x) is a continuous
distribution function, then K(X,, Y)— 0 if and only if A(X,, ¥Y)—0;

7) For every A>0
(28) KX, ¥)=max {sup inf max (o lx1—Xa |, PX=x,, Y<xa)h

sup inf max{Tl | x;—xXal, P(X<x;, Y=xp)}}.
Xs R x 1 €R

Theorem 2. For every A>0 the equality K,=L, holds.

Corollary. A(X, V)=p (X, Y) w(X, ¥)=W(X, Y).

Let 9={a} be a linear space of real functions of bounded variation, de-
fined on whole axis x. We shall consider in the space 9[ some norm A which
apart from obligatory properties possesses the following one: if 0<a,(x)=<ay(x),
X € R, then A(a,))=<A(a,).

Consider the probability metrics WX, ¥)=A(|Fx—Fy|), where Fy(x)
=P(X<x) and WX, V)=APX<x=Y)+P(Y<x=X)).
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Theorem 3. For every X, Y¢Z the equality v(X, V)= w(X,Y) kolds.

The functionals A (a)={[*=|a(x)!?dx}'?, p=1, Ax(a)=sup(|a(x)l|, x€R}
may be used as examples of the norms A. In the case A=A, Theorem 3 is
in fact, the Kantorovich—Rubinstein statement E|X—Y |= [+ | Fy(x)—Fy(x)ldx
(Kantorovichand Rubinstein([7], Vallander [21], Cambanis et al.
[2], Dudley [4]).

2.2. The metric / in the distribution functions space. In this part we
shall consider the metric My, A€ (0, o), in the space &, which are topologi-
cally stronger than the Lévy metric L,.

For every A>0 we define the following functional in

(2.9) H\(F, G)=max {su(pR in(meax {—;‘— | x1—xal, | F(xy)—G(x9) |}

sup inf max{—;‘ | X, —x5 ), | F(x1)—G(x9)}}
X2 €CR xR
The functional H,(F, G) has the following properties:
1. For every A>0, H,(F, G) is a metric in .
Introduce the metric Ay(B,, B,), By, Ba=D=RX|0, 1] as a Hausdorff di-
stance, induced by p, (2.5). Define as a closure graph I'(F) the following sub-
set of the space D

F(F)= [ (5, Fe+O)] UL U (x, Fx—O))

Then

2. H\(F, G)=h\(T(F), T(Q)).

3. If Fand G are continuous distribution functions, then H=L,.

4. For every A>0, L;,ngglin;Hk:p.

A

Note. Let two metrics d; and d, be given in the metric space S. Then
the metric &, is called stonger than d,, d,>d, if the d, — convergence of the
sepuence of elements in S implies d, — convergence, and if the opposite sta-
tement is not true;

5. For every A>0 the relation L,<H)<p holds.

We describe now the topological conditions for convergence in the me-
tric H,, using the fact that the metric A, is Hausdorff distance in D=R X0, 1].

Let us denote by It B, the topological limit of the sequence of the sets
B,=D, n=1, 2,... (Hausdorff [6]).

Theorem 4. If F, F, are distribution functions, then H\(F, F)— 0 if
and only if WI(F,) exists and coincides with T'(F).

The metric space § with metric A is separable, but noncomplete. We
shall define a metric d, satisfying the following two conditions :

(i) d, is topologically equivalent to the metric /;

(ii) the metric space % with the metric d, is complete. The metric d, will
have the Skorohod metric structure (Skorohod [19], Billingsly [1]). Let
¥ be a space of strongly increasing continuous functions A(£) such that
M—o0)= —co, M+ )=+ . Consider in the space ¥ the following func-
tionals

_ Moxy) —Mxg) _ _
WAl =sup| log =222, il dllp=sup | Mx)— x|
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Then for every F, G¢ F we define

dy(F, G)= inf max {IIAll, Al sup | F(x)—G(Mx)) |}
A (F XER

For every Ac@ and 8>0 denote
@,(8)=sup min {sup [F()—F(¢)], iu(p%[F(t,—M)—F(t)l}.

AT

where the supremum is taken over ¢ and ¢, such that ¢, <¢<¢, +38. For A={F}
we denote wp=a,

Note. A subset A of a metric space (S, d) is said to be d-compact if
every sequence of points in A has a subsequence d-converging to a point
of S. Some authors refer to this property as relative sequential compactness.

Theorem 5. The set A of distribution functions is H-compact if and
only if A satisfies the following conditions :

(A) A—is weakly compact (L-compact),
(B) lim sup wg(8)=0.
80 F(A

Corollary. The set A is p-compact iff and only iff A is weakly
compact and lims_o ©4(8)=0.

We shall define a compound metric 7 in such a way that A, should be
minimal with respect to 7. For every A>0 denote

T»(X, Y)=max {sup inf max {—;— | X1—Xl, P(X=x,, Y<<xy), P(Y=x, X<x,)}
X1 ER x2 (R

sup inf max{-k—1 | x1—xal, P(X=x,, ¥ <x3), P(Y=x,5 X<x)}}
xef R x1(R

The functional 7T,(X, ¥) has the following properties:

1) For every A>0, 7%(X, Y) is a probability metric in Z';

2) For every A>0, Ka=Ta<limo Tu(X, Y)=A(X, Y).

Theorem 6. For every A>0, T)=H,,

3. Weighted Lévy metric in the distribution functions space. The weighted
metrics are used in many problems of estimation of the remainder term in the
central limit theorem (P etrov [10])

Let ¢(x)=a>0, x ¢ R be a continuous function on the real ‘line. When
using the Lévy metric structure (2.1) to determine the weighted Lévy me-
tric, i. e.

@.1) LXF, G; q)=inf{e>0: ¢(x) [A(x)—G(x+e)=s,

q(x) [G(x)—F(x+¢)]=g, for all x ¢ R}
we need to suppose that g(x)is a nondecreasing function. However, by keeping
the Hausdorff structure for the Lévy metric (2.4) we can use it without this
restriction.

Let a=g(xo)=inf {g(x), x € R} and ¢,(x)=g(x)] {x=xo}+al{x=x0}, 7a(x)
=al{x < x} +g(x){x=x,}. Let us define the weighted Lévy metric as follows:
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32) L(F G; g)=max {XS‘:P inf max [ | x;—x3 |, ¢1(X2)F(x2)—q1(x1)-G(x1))

R x3€¢R
) esgpx zn; max [|x; —x.|, §1(x1)G(x1)—g1(x2)F(x3)}s
sup inf max [|x;—x, ga(x1) Flxy)—ga(xa)G(x,)]
XS(“RP in(fkmax [1x1—xa], ga(Xa)- a(xs)—‘h(xl) F(xl)]}'

where F=1—F.

L(F, G; q) is a simple probability metric and L(F, G; 1)=L(F, G). For
every continuous function g(x)=a>0 and €>0 denote by ALx; &), x€R,
the following function

Ayx; e)=sup{g(x)/q(¥); y € [x—e, x+e]}

Let Q be a space of continuous functions satisfying the following condition
limg,g limyno Agfx; €)<<+ 0.

The functions a+exp{| x|}, v€(0, 1] and a+|x|? B>0 may be used as
examples of the functions ¢ ¢ Q, but a+exp{|x|}¢ Q, when y>1.

Theorem 7. If g€ Q, then § is a complete metric space with metric
L(F, G; q).

Let ¥, be the set of all F¢ & such that

lim sup g(x)F(x)=0 and lim sup g(x)F(x)=0.
Nooo x<—N Nooco x>N

Theorem 8. Let g€ Q. Then the set A of distribution functions is a
L(-, -, g)—compact subset of g if and only if limy_e SUPx ¢ 4 SUPx<—n g(x) X
F(x)=0 and limy,.Supz¢a Supx>n~y g(x) F(x)=0.

Define, for every F¢ & the following functional

My(F)=max gsstg,p 9(x) Fx), sup g(x)F(x)}-

Theorem 9. Let g€ Q. If FeF and F € Fgn=1, 2,...then L(F,, F;q)
—0 if and only if L(F,, F)—0 and M{F,)—M/F).

4. The Lévy metric in random vector spaces. Denote by R* — k-dimen-
tional Euclidean space with norm |x|=maxi<i<t|x;| and by %* —ihe set of
distribution functions on the R*. Let e be the unit vector in R*. The Lévy metric
Ly(F, G)=inf{£>0; G(x—Aee)—e=F(x)=0G(x+Aee)+¢, for every x ¢ R¥}, >0,
metricizes the weak topology in &*.

Denote by &(Fy, ..., Fr) the set of all distributions F ¢ §* with one-di-
mensional marginal distributions F;, Fy, ..., Fr.

Theorem 10. For every A>0

min{Ly(F, G); Fe(Fr, - .., F) GeB(Gor- .., G} =max Ly(F,, G).

Denote by p(F, G) the uniform distance in §*:
p(F, G)=sup{| F(x)—G(x)|, x¢€R*}.
Corollary. min{p(F, G), FeF(Fp..., Fr) GeF(Gy. .., G)}
=max{p(F;, G, i=1,..., k}.
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The Lévy metric has the following Hausdorff distance representation: For
every A>0

L, (F, G)=max {sup inf max{ —;t— Il xy—xq ll, G(x9)—F(x,)}
x1 € RR xy ¢RR

sup inf max{lT lx;—xall, Flx;)—G(x2)}}
X2 € RR x, (RR

5. Hausdorff metric consrtruction as a generalization of the Lévy —
Prohorov distance structure

5.1. Hausdorff-distance representation of Lévy — Prohorov metric. Let
% be the set of all closed subsets on the metric space (U, d). The Hausdorff
distance 7(G,, G,) metricizes €. Let 2(B) be the system of all probability mea-
sures on B=LPB,. If P¢ 2 then ¥determines # uniquely.

Definition (Prohorov [11]). Let P, Q be two Borel prabability mea-
sures on a metric space (U, d). Let n(P, Q)=inf{e>0; P(C)=Q(C?)+¢, Q(C)
=P(C®)+¢, for all C ¢ ¥}, where Ce*={x¢ U; d(x, C)<¢g}.

Let us define, for every A>0, the Lévy — Prokorov metric as follows:

(5.1) m(P, Q)=inf{e>0: P(C)=Q(C*)+¢, QC)=P(C*)+e, for all C¢%).

The Lévy — Prohorov metric has the following properties:
1) For every A>0, m(P, Q) is a metric in 2.
Denote the uniform metric on sets

o(P, Q) =sup{|P(A)—Q(A)|, Ae®B}
e(P, Q=inf{e>0; P(A)=Q(A®), for all A¢B}.
2) From (5.1) it follows

(5.2) l;monl(P) Q)zc(P’ Q)’
(5.3) lim Am (P, Q=U(P, Q).

The Lévy — Prohorov metric has the following Hausdorff-distance repre-
sentation :

Theorem 11. For every A>0

(5.4) (P, Q)=max {sup inf max {IT r(C,, Cy), P(C))—Q(Cy)},
ci¢bc.c¥
sup inf max {% r(Cy, Gy), Q(Cy)—P(CY}}-
(L ANES

Let (Q, o, P) be a probability space, Z ={X} the set of random variables
on (Q, &/, P) taking values in a separable metric space (U, d). Let us define,
for every A>0 the Ky Fan metric

(5.5) H(X, ¥V)=inf{e>0: PA(X, Y)>re)<e).

Denote the indicator metrici(X, Y)=E/{X=}}and £L(X, Y)=esssupd(KX,Y)
=inf {€>0: P(d(X, Y)>¢)=0}.
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Then we have
(5.6) lim A 4(X, ¥)=i(X, 1),
A=

(5.7) lim A2 (X, V)= 2(X, V).

Combining the relation X =mn, see (1.2), with (1.4) and (5.2), (5.3), (5.6), (5.7)
we show that

(5.8) X, Y)=m(X, V),
(5.9) (X, V)=0o(X, Y),
(5.10) 2(X, Y)=UKX, V)

Another proof of (5.9) is given by Dobrushin [3]. The relation (5.10) gives
an answer of a Dudley’s question [4, n. 20. 1].
Further on we consider compound probability metric B, A>0 in the space

Z which have Hausdorff metric structure and Bp=m,. For every A>0 we de-
fine the following functional in % :

Ba(X, Y)=inf{e>0: P(X€C, Y¢C*)<g, P(Y€¢C, X¢C*)<g, for all C¢¥€)}.

The functional B,(X, Y) has the following properties :
1. For every A>0, Bu(X, Y) is a metric in Z.
Denote the following compound metric in &

B(X, Y)=max {supP(X¢C, Y ¢ C), supP(X¢C, Y ¢C)},
cc¥ cc¥

C(X, Y)=inf{e>0: P(X¢C, Y ¢C*)=0,
P(Y €C, X ¢ C)=0, for all C¢¥)}.
2. We have limo Bu(X, Y)=B(X, V), lim<ABu(X, Y)=C(X, Y). For

any set AcU let 0A denote the boundary of A.
3. If Br(X,, X)—0 then

P(X, € A)—P(X € A), P(X, € A, X ¢ A)—-P(X¢cA)
for all A with P(X ¢ 0A)=0. B(X,, X)—0 if and only if o(X,, X)—0 and
sup{|P(X, €A, X€¢ A)—P(X ¢ A)|, A€ B}—0.
4. For every A>0 we have §x=m, B=o, C=L
5. For A>0

Br(X, Y)=max{sup inf max{ o r(C, Cs), PX€C,, Y¢Cy)),
CebC.c€

sup inf max{-;— r(Cy, Gy, P(Y € Cy, X¢C}}
Cik€ Cic€

5.2. The Lévy — Prohorov distance in the space of continuous from
above functions on sets. Let (U, d) be a metric space and 2 be a set of
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Borel probability measures on U. Let the single-valued, real function ¢(C)
be defined in the metric space (¥, r) of all close sets CcU with Hausdorff
metric r. Denote &=4&(a, b) — the set of all functions ¢: A(p)—[a, 6], A(e)
¥, which are continuous from above, i. e. if C,¢ A(p) and C ¢ A(9), and
rC,, C)—0 then lim sup, ¢(C,)<¢(C).

Note. If P¢ 2, then P¢ &0, 1)

Definition. Let @r:Ar—[a, b] be a sequence of continuous from above

functions. We call the function
(—P(C) = sup {li,a ox (Cr), r(Cr, C)T » Cr € Apry {Ander C{Ak}s},

o(C): A—|a, b)

an upper topological limit ¢=1t¢. of the sequence ¢u.The function ¢ is
defined in Ar=1t A, — the upper closed limit of set A, (Hausdorff [6)).
Definition. The fanction

@(C)=sup {lim g«(Cx), 7(Cr, C) —0, Cy € As, k=1, 2,...}
k

is called a lower topological limit ¢=1t¢gw The function ¢ is defined
in A=t A, the lower topological limit of sets Ax. If _A=7\=lt A, and for any

Celt A
(5.11) 9(C)=0(C)

then the function ¢=1to,=1t o, =1t o is called a topological limit of { ¢ }.
Denote by P, = the weak convergence of probability measures in 2.
Theorem 12. /[fP, P, n=1, 2,... are Borel probability measures, then
P=1tP, if and only if P,=P.
Definition. Let ¢;:A;,—[a, b), i=1, 2 be two continuous from above
Jfunctions. Define the Levy—Prohorov metric between ¢, and ¢y by

(5.12) (@, @p)=max gsgg Ci_n(fA max {r(Cy, C5), ¢:(C1)—9y(Cy)},
sup inf max{r(C, C;) 94(Cy)—e,(C)}}-
Caf A: Ci€ Ay

If ¢, @3€ P then the representation (5.12) in accordance with (2.4) coincides

with the usual Lévy—Prohorov metric.
Denote by &, the space of all ¢ ¢ & with closed definition ranges.
Definition. If 9,€8, 9,¢& and n(o, @) —0 then the sequence {o,}
is called metrically convergent and ¢,=limeo, its metric limit.
Theorem 13. If the metric limit o=1m @r exists, then ¢ =1t @p.
Theorem 14. If the sequence {9,}=& is a n-fundamental one, then

l—tq)kzli‘Pk-
Note that in the space £ the implication

(P, P,) Oleadsg P¢ 2 :P,,':“P

n—yo0, M—r00

1l INancka, 1. 7
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fails for non-Polish space. From theorem 14 it follows that it n(P,, P,)—0
when n, m—oo then the limit ¢=1tP, ¢ & exists.

Theorem 15. If (U, d) is a complete metric space, then the metric
Spece (&, m) is also complete.

Theorem 16. If (U, d) is compact, then the metric space (&y m) is
also compact.

Acknowledgement. I should like to express my thanks to V. M. Zolota-
rev tor discussing the results and important comments. .
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