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ON BOCHNER CURVATURE TENSORS
IN ALMOST HERMITIAN MANIFOLDS

GEORGI T. GANCHEV

A curvature identity characterizing almost Hermitian manifolds with pointwise constant antiholo-

m i . .
an%rphlc sectional curvatures is found. An antiholomorphic operator on curvature ten§or is mt.roduced
“"de}-he Veclor space of the transformed curvature tensors is considered. A decomposition of this space

Setig the action of the unitary group is given using as a base tensors of constant antiholomorphic

c"f\'atnal Curvatures. Considering a conformal equivalence to manifolds with zero holomorphic sectional

trie ure§, zero antiholomorphic sectional curvatures and zero constant type, theorems on t.h~e geome-

loldmea"mg respectively of the generalized Bochner tensor, Bochner tensor and almost Hermitian mani-
S of conformal type are proved.

Let V be an n-dimensional real vector space with a positive definite inner pro-
and denote by #(I/) the vector space of all curvature tensors over V. In [6, 7]
Whils given a decomposition of #() under the action of O(n) into three components
tig Ch give important classes of Riemannian manifolds. As a base of the decomposi-
M the tensors of constant sectional curvatures are used.
decomposition under the action of U(n) of the subspace #'(V) of K-curvature
in (V) is given in [5], [8]. As a base of the decomposition K-curvature ten-
S with constant holomorphic sectional curvatures are used. Using this decomposi-
1 and the holomorphic operator on curvature tensors, we introduced a generalized
Cner curvature tensor, associated with an arbitrary curvature tensor [1, 2].
tiop A complete decomposition of (V) over a Hermitian vector space under the ac-
of U(n) is given in [9].
Usig In this paper we introduce an antiholomorphic operator on curvature tensors and
Ve § as a base curvature tensors with constant antiholomorphic sectional curvatures
anot()bta]-n a decomposition of the transformed #(V) into three components. This gives
oy her interpretation of the decomposition in [9]. The Bochner curvature tensor as-
fol_]ated with a curvature tensor R coincides with the Weyl component of the trans-
atmed Z%. We consider an operator on the Kahler difference and using as a base cur-
ing ure tensors of constant type. we obtain a decomposition of the transformed Z(V)
or _tf_lree components. Further, we consider a conformal equivalence of an almost
3nti?\"tla" manifold to a manifold with zero holomorphic sectional curvatures, zero
tag olomorphic sectional curvatures and zero constant type. In every of‘ these three
ten§S We obtain a theorem conserning the geometric meaning of the generalized Bochner
tiVe](;,r' Bochner tensor and almost Hermitian manifolds of conformal type, respec-

et
l .

teﬂSors
S()r

tio

Qeg; 1 Preliminaries. Let VV be an n-dimensional real vector space with a positive
to Uite inner product g A tensor R of type (1, 3) over V is said to be a curvature
Or over V if it has the following properties for all x, y, 2, u in V:

R(x, y)2=—R(x, ¥)z,
R(x, )2+ R(y, 2)x+ R(z, x) y=0,
R(x,y, 2z, u)=—R(x, y,u, 2),

:1,1)
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where R(x, y, 2, u)=g(R(x, y)z, u) is the corresponding tensor of type (0, 4).

The sectional curvature of a 2-plane « in V with respect to R is given by
K(R)(u)=R(x, v, ¥, x) where {x, ¥} is an orthonormal basis of «. The Ricci tensor p(R)
of type (0, 2) associated with R is defined by

P(R) (¥, 2)=trace (x¢ V— R(x, ¥)2).

The corresponding tensor of type (1,1) is given by g(Q(R)(¥), 2)=p(R) (¥ ?) and
the trace of Q(R) is called the scalar curvature ©(R) of R. ]

Now, let V' be a 2n-dimensional real vector space with a complex structur¢
and a Hermitian product g, i. e. J2=—/, where / denotes the identity transformatio?
of V and g(Jx,Jy)=g(x,y) forall x,y in V. With an arbitrary curvature tensor |
over V we associate the tensor R* defined by R*(x,y, 2, u)=R(x,y, Jz, Ju) for 2
x, y,2z,u in V. In general, this tensor is not a curvature tensor, but it has the firs
and third properties of (l.1). We denote K*(R)(u) the sectional curvature of a 2'Pla"i
a in V with respect to the tensor R* The Ricci tensor associated with the tensof
is denoted by p*(R) and is given by

2n
PH(R) (¥, 2)= 2 R(e y. Jz, Jey),

where {¢,} is an arbitrary orthonormal basis of V. The scalar curvature of R* is ¢
noted by t*(R).

Let (V) denote the vector space of all curvature tensors over V. The inner PI
duct ¢ induces a natural inner product on (V)

(R', R"y= L? LR e epey, R'(e, €))ey),

where R’, R” are curvature tensors and {e;} is an arbitrary orthonormal basis of Vl
The standard representation of the unitary group U(n) in V induces a natur?
representation of U(n) in Z(V)

(aR) (x, y, 2z, )=R (a~'x, a~ly, a~z, alu)

for all x, y,z,uin V, a¢U(n) and Re¢A(V).

A 2-plane o in V is said to be holomorphic (antiholomorphic) if jaza(./a,l—azj'
The sectional curvatures of the holomorphic (antiholomorphic) 2-planes are calle
holomorphic (antiholomorphic) sectional curvatures. A curvature tensor R is sai t
be with constant holomorphic (antiholomorphic) sectional curvatures if K(R)(c)=C"
for an arbitrary holomorphic (antiholomorphic) 2-plane « in V.- e

If Sis a symmetric tensor of type (0,2), (S) denotes the following curvatif
tensor:

0(S) (x, 3, 2, u) = 8y, 2)S(x, 1) —g(x, 2)S(y, 1)
+8(x, w)S(y, 2)—g(y, w)S(x, 2).

If Sis a tensor of type (0,2) and S(Jx, Jy)=S(y, x) for all x, yin V, y(S) de
notes the following curvature tensor:
v(S) (x, ¥, 2, w)=8(y, J2)S(x, Ju)—g(x, J2) S(y, Ju)—2g(x, Jy) S(z, Ju)
+8(x, Ju)S(y, J2)—g(y, Ju) S(x, J2)—2g(z, Ju)S(x, Jy)-
The basic curvature tensors invariant under the action of U(n) are
m(x, )2 =8(y, 2)x—g(x, 2)y;
(X, Y)2 =gy, 2)Jx—g(Jx, 2)Jy—2g(/x, y)Jz.
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We shall use the following lemmas [9]:
emma l.1. For every symmetric tensor S of type (0,2) we have
D) p(o(8)=2n—1)S+trS. g;
2) PH(0(S8) (. ¥)=S(x, )+ S, Jy); %YV,
3) (R, o(S)=4(p(R), Sﬁv.
_JLemma 1.2. For every tensor S of type (0,2) satisfying the condition S(Jx, Jy)
=Sy, x) for all x,y in V we have
D) p(y(8$)=3(S+S5);
2) p*(W(S)=2(n+1)S+1trS.g;
3) (R, w(S))=8(p*(R), S)+4p*(R), S'), where S'(x,y)=S(y, x) for all x,y in V.
urther, we have

(@R’ aR")=(R', R")
(12) paR) (¥, 2)=p(R) (a~'y, a'2);
a9(p(R))= ¢(p(aR)),
waR)=1t(R),

Vhere R/, g7 R are curvature tensors and aeU(n).
Analogous formulae hold good for p* t* and y as a corollary of Ja=aJ, a ¢ U(n)

p*(aR) (3, 2)=p*(R) (a—1y, a=12),
(13) aw(p*(R)=w(p*(aR)),
™aR)=1%(R).

2. Holomorphic operator on curvature tensors. In [1,2] we associated with
Y curvature tensor R a (generalized) curvature tensor AR

HR(x, 3, 2 1)=15 (3R(x, ¥, 2, ) +3R(UJx, Jy, 2, u)+3R(Jx, Jy, J2, Ju)

+3R(x, ¥, Jz, Ju)—R(Jy, Jz, x, u)—R(Jz, Jx, ¥, 1)
+R(y, Jz, Jx, u)+ R(Jz, x, Jy, u)—R(y, z, Jx, Ju)
—R(z, x, Jy, Ju)+ Ry, 2, x, Ju)+ R(z, Jx, y, Ju)}.
ggritsies‘t_ensor is the uniquely determined curvature tensor having the following pro-
(2-1) HR(x, y, Jz, Ju)=HR(x, y, 2, u) ;
HR(x, Jx, Jx, x)=R(x, Jx, Jx, x)
iof Al x,y,2,u in V. The first identity of (2.1) is called the Kihler identity. The se-

ong equality of (2.1) means that AR and R have ones and the same holomorphic

Senp:
,:tcglonal curvatures. Now, we call this operator HR: R— HR the holomorphic ope-
I,

Cver

Lemma 2.1. Let S be a symmetric tensor of type (0,2) over V. We have
l —
Ho(S)=5 (¢ +v) (S+35),

Chere S(x, ¥)=S(Jx, Jy) for all x,y in V.
e proof is a simple verification.
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A curvature tensor with constant holomorphic sectional curvatures is characte-
rized with the following

Lemma 2.2 [1, 2]. .A curvature tensor R over V is with constant }zolomorp}l”
sectional curvature  iff

HR=pHr, = (u/4) (ny +15).

The constant p is p=1(HR)/n(n+1)={t(R)+3v(R)}/4n(n+1).

In [5, 8] it is p{oved a decomposition theorem for the vector space of the Cul*
vature tensors satisfying the Kihler identity (K-curvature tensors). We shall give this
theorem in terms of the holomorphic operator.

Let s#2%(V") denote the vector space of all tensors HR, where R is a curvatufé
tensor over V. Then, the following theorem holds.

Theoiem 2.1. Let dimV=4. The following decomposition is orthogonal:

HRV)=HR(V)D ARV ) D H R,V ),
where
HAR(V)={HRe¢HRV)| HR= pin},
HANV)={HRECHRV )| p(HR) =0},
H RNV ) is the orthogonal complement of HR (V) in HR(V),
HANV) D H RSV )= {FHR ¢ #RV) | o(HR)=0};

HAY) @ H RV )={HR e HAV) | p(HR)= LR
The component of HR in # R, (V) (Weyl com eralized
Bochner curvature tensor. This tenso?(is) (Wey ponent) we called the gen

_ 2 (HR)
B(FAR)=HR o H‘P(P(HR))"rm Hry,

or taking into account Lemma 2.1

- R S ©(HR) B
B(H[e) HR 2(,1+2) ((p’i"\ll) (p(HR))+ Z(T—{:_IWE (T[l‘f' TIQ).

Later this tensor has been obtained as a projecti a sub’
space of (V) [9]. projection of the tensor R on |

About the geometric meaning of the classical Weyl curvature tensor in @ Rie-
mannian manifplq we shall recall the following ,

Propo SItxgn. If a Riemannian manifold M (dim M=4) is conformally equr
valent to a manifold of zero sectional curvatures, then its Wey! curvature tensor
ﬂanislzqs.

Using holomorphic sectional curvatures instead of all sectional curvatures, ¢
shall prove an analogous proposition for the generalized Bochner tensor.

Let M be an almost Hermitian manifold with a metric tensor £ and an almost
corEplex structure J; let R denote the Riemann curvature tensor of the metric &
If g=e?og is a conformal change of the metric g, then the curvature tensor Ro
is given by

(22) R(x, v, 2, )=e2 (R(x, y, 2, 1)+ 9(Q) (x, . 2, )}
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Where Q(x, ¥)= (7 ,0)y—o(x)o( y)—}—% |o|?8(x, y), @=do and x, y, 2, u are arbitrary
Vectors in the tangent space T,M in any point p in M. From (2.2) we obtain

23) HR=e% {HR+~ (0+v) (Q+Q)}.

Where Q(x, v)=0Q(Jx, Jy) for all vectors x, ¥ in T,M.
heorem 22. [f an almost Hermitian manifold M(dim M = 4) is conformally
Cuivalent to a manifold with zero holomorphic sectional curvatures, then its gene-
Talized Bochner tensor vanishes.
Proof. Let g—=e%g be the conformal change of the metric g and let the curva-
Ure tensor 2 of g have zero holomorphic sectional curvatures. Lemma 2.2 implies
that £/3— 0. From (2.3) we obtain

Q+§=—jigdﬁm+ L)

it (nt2) &

d hence B(HR)- 0.
t This theorem gives the following geometric meaning of the Bochner curvature
®0sor in a Kahler manifold.
; Theorem 23. If a Kahler manifold M(dim M=4) is conformally equivalent
t" @ manifold with zero holomorphic sectional curvatures, then its Bochner curva-
Ure tensor vanishes.
i The assertion follows from Theorem 2.2 and the fact that for a Kahler mani-
0 Hp-—Pp.
t Using antiholomorphic sectional curvatures, an analogous scheme can be applied
0 obtain the Bochner curvature tensor, introduced in [9].

3. Antiholomorphic operator on curvature tensors. Let VV be a Hermitian
v:rctolll' space and R be a curvature tensor over V. Wedenote R(x, y, z, u)=R(Jx, Jy, J2, Ju)

all x, y, 2z, u in V.

Lemma 3.1 [3]. Let T be a curvature tensor over V(dim V=4). If

1) 7‘—_—,7';
the ‘2% T has zero holomorphic and antiholomorphic sectional curvatures,

n T=0.

Lemma 3.2 [3]. Let T be a curvature tensor over V(dimV =4). If

) T has zero holomorphic and antiholomorphic sectional curvatures;

in 1/2) T(x, Jx, z, x)=0, whenever {x, z} is an orthonormal antiholomorphic pair

t}len ’T: 0.

diy Lemma 3.3. If R is a curvature tensor over V (dimV =6), the following con-
ons are equivalent:

1) K(R) (0)=K(R) (¢) for an arbitrary antiholomorphic 2-plane o in V.
2 R-R= '2(;14+U v(p*(R—R)).
i Proof. Let 7 be the curvature tensor T=R~l_€—'§z~n—l_l~_v\v(£>*(/?-—fé)). For every
Cor x in V' we have

(31 T(x, Jx, Jx, x)=0.

| lemmLet {x,y} be an orthonormal antiholomorphic pair. By the first condition of the
| a4 we have
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(3.2) (R—R) (x, ¥, ¥, x)=0,
(3.3) T(x, y, ¥, x)=0.

Further, if {x, y, 2} is an orthonormal antiholomorphic triple, the equality 32
gives .

(3.4) (R—R) (x, ¥, 2, x)=0.

Replacing the orthonormal antiholomorphic triples {(x+y)/\2, (Jx—Jy)\2 2} and
(x— N2, (Ux+I9N2. 2} in (3.4) we get

(3.5) (R—R) (x, Jx, 2, x)=-5 (R—R) (x, 2, Iy, ).
Let {x, 2, ug ..., U, JX,J2, Jus ..., Ju,} be an adapted basis of V. Substituting
y=u,(i=3,...,n) in (3.5) and summing, we obtain
— 3 —
(3.6) (R—R) (x, Jx, 2 x)= TN PH(R—R) (x, J2).

The equalities (3.1), (3.2) and (3.6) give that the conditions of Lemma 3.2 are fulflllqd
for the tensor 7. Hence T=0 and the condition 1) of the Lemma implies 2). The in
verse is a simple verification.

For the case dim V=4 we shall use

Lemma 3.4 [9]. Let dim V=4 and R be a curvature tensor over V. Then the
following identity holds good

R—R=- 0(o(R—R))+ - V(p*R—R)).

Lemma 3.5. Let dimV =4 and R be a curvature tensor over V. If K(R)(a)=K(§) )
for an arbitrary antiholomorphic 2-plane o in V, then p(R)=p(R).

The lemmas 3.3, 3.4 and 3.5 imply PR)=p(R)

Proposition 3.1. Let R be a curvature tensor over V (dim V=4). The f"lww
ing conditions are equivalent :

1) K(R)_(a)=Kl(R) (o) for an arbitrary antiholomorphic 2-plane o in V-

2) R—R=—2(T_q)‘“ V(p*(R—R)).

Proposition 3.2. Let R be a curvature tensor over V (dimV =4). R has
antiholomorphic sectional curvatures iff

zer?

Ry YO R+ (g o Ta=0.
Proof. Let {x,y} be an orthonormal antiholomorphic pair. Then
(3.7) R(x, ¥, y, x)=0.
From here we get for an arbitrary unit vector x in V
(3.8) R(x, Jx, Jx, x)—p(R) (x, x)=0.

According to the Lemma 3.1, the equalities (3.8) and (3.7) give that the followmg

curvature tensor is zero:

(39) R+R— 5 w(p(R+R)=0.
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The next two equalities directly follow from (3.9).
(3.10) PHR+R)—"E p(R+R)—% g=0,

@.11) 3t (R)—(2n+ 1)y(R)=0.
The equalities (3.9), (3.10) and (3.11) imply

R+R— 5t W(p* R+ R) + 5 1t 0
+R= a5 YRR+ 5y gy M=

Taking into account Proposition 3.1 and the last equality, we obtain

1 THR) .
R— 2An+1) \V(P*(R))+ (2n+1)(2n+2) mp=0.

The inverse is an easy verification.
We define an antiholomorphic operator A: #(V)—&(V) as follows

B 1 . R)
AR=R= Sy YO RN+ ) ey ™

From Proposition 3.2 we obtain
Proposition 3.3. Let R be a curvature tensor over V(dim V=4). R has con-
Stant antikolomorphic sectional curvatures v iff

AR=VAn,.

The constant v is v=1(AR)/t(An,)={(2n+ 1)1(R)—3*(R)} 8n(n*—1).
i Now, let M be an almost Hermitian manifold with a curvature tensor R. The mani-
Od is said to be with pointwise constant antiholomorphic sectional curvatures if
9 every point p in MK(R) (a; p)=v(p), where « is an arbitrary antiholomorphic
“Plane in the tangential space T,M and v(p) does not depend on .

Applied to almost Hermitian manifolds, Proposition 3.3 gives

Theorem 3.1. Let M(dim M=4) be an almost Hermitian manifold with a cur-
Wture tensor R. The manifold M has pointwise constant antikolomorphic sectional
“Urvatures iff

AR=v(p) Ar,.

The function v is v(p)={(2n+ L)i( p)—3t*(p)}/8n(n2—1).
i Let &/%(V) denote the vector space of all tensors AR, where R is a curvature
tnsor over V.

Proposition 3.4. A tensor AR is orthogonal to Ar, iff ((AR)=0.
1 Proof. We have p*(AR)=0 and hence t*(AR)=0. Using the Lemmas 1.1 and
2 we obtain (AR, Am;)=21(AR) and this gives the assertion.

Theorem 3.2. Let dimV=6. The following decomposition is orthogonal :

ARV )=AR(V)D AR(V) D ARV,
Where

1) SR(V)={AR¢ SRV ) AR=vAm,};
2) AR,(V)={ARE AR(V)/p(AR)=0} ;

¥RV is the orthogonal complement of AR, V) in AR(V)" .
3) ARY(V)D AR (V)={AR € A R(V)/{(AR)=0}; p
4) ARV)D SRV)={ AR ARV )P(AR) = ~LR) g},

he subspaces are invariant under the action of U(n).
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Proof. Taking into account Proposition 3.4, it remains to prove 4) Let
AR=(AR), +(AR)s+(AR),, From Proposition 3.4 it follows that (AR), = {t(AR)/x(Am)}A%
If (AR),=0, then p(AR)={t(AR)/2n}g, and vice versa. The last assertion of the theorem
follows from the formulae (1.2),(1.3) and the fact that A(aR)=a(AR), a¢U(n).

Using Theorem 3.2 we find the projections of a tensor AR.

Proposition 3.5. The projections of a tensor AR on the subspaces of /R(V) 41

_ @n4+ltr S .
(AR =g e—1~ Am;s

o+l B 1 S=S, (n+DtrS
(AR) =gty Ao (3 + gl A (552)— G DS 4,
_ap_.n+l S+ 1 S—S ., (2n2+3n+4)tr S
(AR)w= AR~ 554y A0 ("57) — g1y A0 C5™) gy ey Amr
where
(AR = p(P)—— B3 s 5. STHR)
(3.12) S(x, 1)=8Ux, Jy); x yev,

tr S={(2n+ 1)x(R)—3t*(R)}/(2n + 1).

Studying detaily the vector space (V') F. Tricerri and L. Vanhecke introduCFd
Bochner tensor B(R), associated with a curvature tensor R [9]. Comparing B(R) wit
the component (AR), (Weyl component) of AR we have

Corollary 3.1. The Weyl component of the tensor AR coinsides with th
Bochner tensor B(R), associated with R.

From Theorem 3.2 we obtain .

Proposition 3. 6. A curvature tensor R owver V (dim V=6) kas constant anti
holomorphic sectional curvatures iff B(R)=0 and p(AR):{r(A@/Qn}g. .

Our interpretation of the Bochner curvature tensor gives the following georﬂetrlc
meaning of B(R).

Theorem 3.3. If an almost Hermitian manifold M (dim M=6) is corzformally
equivalent to a manifold with zero antiholomorphic sectional curvatures, its Bochne’
curvature tensor vanishes.

Proof. ~Let gze%g be a conformal change of the metric g in M. For the curvad
ture tensor R of g we have (2.2). From this equality we obtain AR— e2{AR +A<P(Q)}'

Theorem 3.1 implies AR=0 and hence AR+ A¢(Q)=0. From here we calculate

_ n+l _S—f—@__”l S-S 2n2+-3n+4
O="w—5 "2 -1 "7 Tt oy S8

where S, S and trS are given in (3.12). Hence B(R)=(AR),,=0.

Taking into account that for a Kihler manifold B(R) is the usual Bochner curvd
ture tensor, we obtain

Theorem 3.4 If a Kihler manifold M (dim M>6) is conformally equivale”t
to a manifold with zero antiholomorphic sectional curvatures, then its Bochner Ci
vature tensor vanishes. ’ :

4. Almost Hermitian manifolds of conformal type. Let 2 be a curvature tens®
over V(dim V=4). The tensor R is said to be of constant type A [10] if

(4.1) K(R) (@)—K*R) (a)=1,
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WhFre o is an arbitrary antiholomorphic 2-plane in VV and % does not depend on a.
This constant is r={t(R)—1%(R)}/4n(n—1).

For an arbitrary curvature tensor R we define AR(x, y, 2, u)=R(x, ¥ 2, u)—R(x, y,
22, Ju) for all x, v, 2 u in V.

The following lemma gives a curvature identity equivalent to (4.1):

Lemma 4.1 [10]. Let R be a curvature tensor over V (dim V=4) with the pro-

verty R—R. Then, R is of constant type iff
AR=MAr,.

We shall find a curvature identity equivalent to (4.1) in the general case.
roposition 4.1. Let R be a curvature tensor over V(dimV =4). R is of con-
et type. iff
1
R

A Proof. For an arbitrary antiholomorphic 2-plane o in V we always have
KR) (0)=K*(R)(a). Then, (4.1) is equivalent to the conditions

KR+R) (0)—K*R+R) (@)=2v; K(R) (0)=K(R) ()

for €very antiholomorphic 2-plane o in V. Applying Lemma 4.1 and Proposition 3.1,
¢ obtain the assertion.

We define the operator D as follows:

1 . =
DRZAR—W Ay(p*(R—R)).

Taking into account that Dn,=An,, we get from Proposition 4.1
y roposition 4.2. Let R be a curvature tensor over V (dim V=4). R is of con-
nt type A iff

AR = Ay(p*(R—R))+ A,

DR=2A\Dnm,.

It is not difficult to check

Proposition 4.3. A tensor DR is orthogonal to D, iff 1(DR)=0.

Let DR(V) denote the vector space of all tensors DR, where ReR(V).
Theorem 4.1. Let dim V=6. The following decomposition is orthogonal :

o DAV)=2R(V)D 2RV ) D DR,V ),
ere

IRV )={DR € 2A(V)/DR=2\Dn,};

g DRV )={DR € 2R(V )|p(DR)=0};
VY is the orthogonal complement of DR (V) in DR,(V )",
DRV ) D DRV )={DR € 2R(V)/«(DR)=0};

DR(V) B DRV)={DR ¢ 2V )/ p(DR) =28 g}

T

he Subspaces are invariant under the action of U(n).

Pong he proof of the theorem is similar to that of Theorem 3.2 applying the corres-

g notions to the tensors DR with a slight modification.

%W;Oposition 44. The projections of a tensor DR on the subspaces of
are .
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trS
(DR)xz"'E,(:,__T)'D“l;
1 S+§ 1 Ry trS .
(DRY == Do)+ g py Do) —5pm—gy DM
1 S+S 1 S-S trS .
(DR)y=DR— =57~ Do (—57)— DTl L G R Ty Drmi;

where
S=p(DR)=p(R)—5 p*(R+R);

(4.1) S(x, y)=SUx, Jy); x yeV,
tr S=t(R)—*(R).
The component (DR), (Weyl component) can be written in the form

(DR)w=AR— 5= 89((p— ") (R+ R))— =~ A0(o(R—R))

. * > HR)—TR)
¥ Ay(p (R—R))‘i‘m Am,.
Comparing this formula with the Bochner tensor B(R) we find
Corollary 4.1. The Weyl component (DR),, of DR is

(DR)y=AB(R).

5 We 0call the curvature tensor R over V (dim V=6) to be of conformal type i
( R)w: )

The next proposition follows directly from Theorem 4.1. ¢

Proposition 45 Let dimV=6. A curvature tensor R is of constant typ
iff R is of conformal type and p(DR)={x(DR)/2n)g. R

Let M(dimM=6) be an almost Hermitian manifold with a curvature tensof
We call M to be of conformal type if (DR),=AB(R)=0.

In [4] we proved o of

Proposition 46. Let R be a curvature tensor over V(dim V=8). R ‘SW
conformal type iff AR(x,y,z u)=0 for an arbitrary orthonormal antiholomo’?
quadruple {x, y, z, u} in V. p

Proposition 47. Let M(dim M=8) be an almost Hermitian manifold with
curvature tensor R. The following conditions are equivalent : of

1) R(x, ¥, z, u)=0 for an arbitrary orthonormal antiholomorphic quadﬂll’”
tangent vectors in every point in M;

2) B(R)=0;

3) B(HR)=0 and M is of conformal type. )

The Bochner curvature tensor B(R) was shown to be conformally invariant
Using Corollary 4.1, we obtain

Corollary 42. The tensor (DR),, is conformally invariant. type

About the geometric meaning of an almost Hermitian manifold of conformal y
we have M is
Theorem 4.2. Let M (din M=6) be an almost Hermitian manifold. If I
conformally equivalent to a manifold with zero constint type, then M is of ¢
formal type.
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Proof. Let g=e2g be a conformal change of the metric in M. The curvature

fensor ' of g is given by (2.2), from where we find DR=e*(DR+Dg(Q)). If R is
lvi’tlth zero constant type, Proposition 4.2 implies that DR+ Dg(Q)=0. From this equa-
Y we check

1 o 4 & trS
Q= T An—2) (S+S)’—‘4'(;:_l)— ($—=8+ “8m=1) (n—2) &

Where S, S are given in (4.1). Hence (DR),,,:O.‘
Corollary 4.3. Every almost Hermitian manifold M (dim M=6) conformally
“uivalent to a Kihler manifold is of conformal type.
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