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ON THE JENKINS INEQUALITY FOR THE PAIRS
OF UNIVALENT MAPPINGS WITH QUASICONFORMAL
EXTENSION

VASILIY V. KURTA

The Jenkins inequality for univalent functions is generalized for a class of pairs of meromorphic
in the unit disk quasiconformal homeomorphisms of certain bigger disks.

1. Introduction. The given paper is devoted to the spreading of Jenkins
inequality ([1]), which is well-known in the theory of univalent functions, to the
class le .0, consisting of pairs of Q, and Q,, respectively, of quasnconformal (qo)
homeomorphlsms of the disk Ug={z :|z| <R}, 1<R, meromorphic in U, and
that map Uy, onto mutually nonoverlapping domains.

The proof is based on the combination of the variations method for
quasiconformal mappings and the area principle for univalent analytic functions
(see [4-6] and [2-3], [7-9)).

Let M3 be a class of meromorphic univalent functions f(z)=1/z+by+ b,z +...
in U 0 permitting Q — qc extension up to the disk Ug, 1<R, that do not admit
zero in Ug; MG o,(c0, 0) is a subclass of MG, o, providing the following
conditions:

[O=c0, limzfi()=1 f,(0)=0

z—=0
and M(c0, 0)=Mp, o, (0, 0).

Note that the combination MG o, (0, 0) of the classes MG o, (oo, 0) and

Yook {F, 0} is compact in the topology of locally uniform convergence.
€Rg,

2. The variation of functions of the class M 0,.0, (0, c0) and necessary
conditions for extremum. Let J be a continuous real functional defined on

M(co, 0). Assume that J has a real Gateaux derivative at the point
{F, f)e M(c0, 0) relative to the class M (co, 0), i.e. for any pair of functions

{F* f*}eM (0, 0),
where
F*=F+¢H+o(s), f*=f+eh+o(e), >0,
J(F*, f*)=J(F, /)+¢ReL(H, h; F, f)+o(e).
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Here L(-,-, F, f) is a continuous bilinear functional on the set of all
meromorphic functions on a single disk.
Consider the maximum problem of the functional J(F|,, f|,) on the class

ME 1.0, (90, 0). The existence of extremal functions follows from the compactness
of ‘.Ulgpqz(oo, 0) and continuity of the functional J.

Hence forth we are interested in those functionals, the maximum of which is
achieved within the class 9]&61,92(00, 0). The analysis of another functionals on
angl_gz (o0, 0) may be reduced to the analysis of extremal problems for the
class MG .

Theorem 1. Let for the pair of functions {f,, fz}e‘.mzl.qz(oo, 0) the
Junctional J takes its maximum within the class M, .0, (c0, 0) and

o
(1) g(w, f)— m,
P o@)=[IL(g(, f1). g(t, £)]"2dt.
Then:

1) fe(z) satisfies the differential equation

3) 1= LU, (2. 11). 9U,(2). 12))
" L(g(fp(z), f) g(fp(z)' f3)

4pSps

Jor almost all (a.a.) z from K, g/N,.
Here

N,={z :L@U,(2). 11). 9(f,(2). [2)=0},
K, g={z:1<|zI<R}, q,=(Q,—1AQ,+1), p=1, 2.

2) If the analytic function L(g(-, f,), g(-,f)) is non zero at a neighbourhood of
a point wef,(K, g) then the function

JP(Z)—‘: @ Ofp(z)—qp‘p Ofy(z)

is analytic at a neighbourhood of a point z= f,'(w), p=1, 2.

The proof of Theorem 1 is standart and based on the following variation’s
Lemma (see, e.g., [5, 6] and [10, p. 141]).

Lemma. Let {f,, f,}€M§ o, (c0, 0) has complex characteristics p, and p,,
correspondingly. Let v,(z), p=1, 2, l?e arbitrary functions measurable in K g, such
that
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esssup|v,(2)|<q,, p=1, 2.
ze Kl.R

Then the class Mg 1.0, (90, 0) for a sufficiently small >0 contains the pair of
functions

P 2 @) —v(0)fE@)
. 2 y HO7 Vil )
4) 1 @=1,+ 1) K{& [,= S O—1,@f)

]dm,+0(ez),
p=1, 2 and O(e?)/e? is uniformly bounded in Upg.

The Lemma can be proved by two fundamental results from the theory of
quasiconformal mappings, which are connected with the theorems of existence
and uniqueness, and by the theorem of representation of a main homeomorphism
of Beltrami equation (see [11, p.80-104] and [12, p.107-116]).

3. The area theorem. Let pe(0, R). Denote by D, the set C\{f,(U,)uf,(U,)}
and by D) a simply connected domain obtained by cutting D, along a simple
smooth arc.

Theorem 2. Let {f,.f,} e‘.mgl,qz(oo, 0) and Q(w) be a function with regular
derivative in the domain D(r,), ro<l1. If the functions

(%) G,(2)=Q00,(2)—q,00¢,(2)

have a regular derivative in the annulus K, r then for the expansion coefficients of

Junctions Qo f,(z) in the annulus K, | representing into series of type

Qof,(2)=Z BPz"+ T aP2"+pPInz,
n=1

n=0
p=1, 2 and BV + B2 =0, the following inequality holds:

(1_q2)—l ; n(RZn__ 2R-2n) P — ﬁ(p) R4”_1 2
P dp " qpPn R4"— g2
1 qp

1 n=

(6)

M

P

<

p

(1-g3)  n(R*"—qgR™?")71|BP|

1 n=1

I Me

2 -
—2Re X ﬂ"’[ai{”+(1—q,z,)"1(,3“”+2qpﬂ(”+q,2,ﬂ(”)ln R].

p=1

The equality is valid only in the case when the area S(r) of the image domain
A(r)=Q(D'(r)) tends to zero when r—R.
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Remark 1. Theorem 2 assumes that the conditions of analytic functions are
fulfilled on G,(z), p=1, 2. Utilizing the variations method there was shown that
these condmons are valid for the wide range of extremal problems in p.2.

Proof of Theorem 2. Using the analyticity of functions G,(z), p=1, 2, we
calculate the area S(r) of image domain A(r)=Q(D'(r)), 1<r<R.

Since S(r)=0 lim,.zS(r)=S=0, i.e. the inequality (6) is valid.

4. Main result. Let {f,, f,}eM§ o, (0, 0), f,(0)=a, and

Si(D)—1,(2)
(fi(®—a,)(a,—f,(2) '

(1) — £i(2)) 72fi(0)
(D —a)(fi(D—a)(t—2)

Orp(t, z)=In p#k,

¢ p(t, 2)=In p=k,

p=1,2; k=1, 2; moreover the factors containing a, = co must be substituted by
the unit.
Note that for |7|<1, |z|<1

and

Theorem 3. Let {f,, f,}€M§, o,(0, 0)s Xmx. k=1, 2, m=1, 2,..., be
arbitrary constants, such that

© 1 +qu2m lxm k|2

2
xr z < 0.
@ A= k=1 m=1 g +R*™ m

Then
2 2n
(8) =z g

T n T
" 1+qu2" bet m=1

1 n
. Remark 2. Assuming R=1 in Theorem 3, we obtain the coefficient
inequality of Jenkins type for the class 9 (oo, 0) ([2, p.218-219]) which may be
transformed into Jenkins inequality when p=1 ([1]).

Proof of Theorem 3. Let the pair of the functions {f,, f,} maximizes
a real continuous functional

2
9) J(f1. J2)=Re Z L,oL (px,(t. 2)

k,p=1
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defined on MG o, (co, 0). Here L, is a linear continuous functional such that
L, (t™)=Xp. It is easy to see that {f,, f,}€M§ o, (0, O).

Concretizing the statements of Theorem 1 with respect to the functional of
type (9) one can verify that the functions {f,, f,} and

)) 2(1 <1 f2(2)>)
w
satisfy the conditions of Theorem 2.

Applying the inequality (6) to the extremal pair {f,, f,} with the given
function Q(w) and performing the necessary simple transformations we obtain the
expression

w

2 ©
(10) Re{ z z wﬂ‘,;“:,x,,,_kx,,'p}gA,

k,p=1 mn=1

which is valid for the class MG o, (o, 0).
The inequality (8) can be obtained from (10) with the standard
transformation by Cauchy inequality (see, for example, [3, p.174-176]).
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