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STUDIA MATHEMATICA

ON A NONSTANDARD BOUNDARY VALUE PROBLEM

FOR THE LAPLACE OPERATORIN THE PLANE∗

Petar Popivanov

This paper deals with a nonstandard boundary value problem(BVP) for
the Laplace operator in the plane. On the boundary of a bounded simply
connected domain, say the unit disk, |∇u| = m is prescribed and it is shown
that in general the corresponding bvp possesses infinitely many solutions
which can be classical or generalized depending on the function m > 0,
m ∈ C0, respectively m > 0 a.e., logm ∈ L1, m ∈ Lp, p ≥ 1. We shortly
discuss the same problem in doubly connected domain.

1. Introduction

This paper deals with the following nonstandard non-linear boundary value prob-
lem (bvp):

∣

∣

∣

∣

∣

∆u = 0 in B1 =
{

x2 + y2 < 1
}

=
{

z ∈ C1 : |z| < 1
}

|∇u| = m(ϕ) ≥ 0 on S1 =
{

x2 + y2 = 1
}

=
{

z ∈ C1 : |z| = 1
}

,
(1)

x = r cosϕ, y = r sinϕ, −π ≤ ϕ ≤ π, m(ϕ + 2π) = m(ϕ), ∀ϕ. Later on we shall
assume that ϕ ∈ [−π, π], m(−π) = m(π).

We have used the notion “nonstandard bvp” as in general for each fixedm ≥ 0
(1) possesses infinitely many solutions. Concerning the approach in investigating
(1) we are looking for a solution having the form u = ℜF (z), where F (z) is
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some regular (holomorphic) function in the unit disc B1. In order to satisfy
the boundary condition |∇u| = m(ϕ) on the unit circle S1 we shall use several
well-known properties of the regular functions belonging to the classical Hardy
functional classes Hp, 0 < p ≤ ∞ and the Nevanlinna class N . Certainly, in
many cases is very important F ∈ C0(B1) as it implies that u ∈ C0(B1). Assume
that ∆ is the 3-dimensional Laplace operator and instead of the interior bvp (1)
we study the exterior bvp (1) with u(∞) = 0. The 3-dimensional problem (1)
(m = m(θ, ϕ)) is called Backus problem and it has significant applications to
gravity and geomagnetic intensity surveys (see [2]). Some papers are devoted
to (1) ([2], [6], [10]) but we try here to propose a further development on the
subject dealing with boundary functions m vanishing on some closed subset E

of S1 having zero Lebesgue measure. The simplest case is when E contains
finitely many points but much more interesting is the case when E ⊂ S1 is
closed, contains infinitely many points and is of measure zero. Unfortunately, in
the latter case we can solve (1) only for specially constructed smooth functions

m, m
∣

∣

∣

E
= 0, m > 0 on S1\E. We point out that then we find either boundary

functions m flat at E and belonging to some Gevrey class Gs(S1), s > 1, or
Cεn smooth functions having zeroes of finite order εn > 0, where {εn} is some
appropriately chosen sequence. As Hp spaces are involved in our investigations,
we shall have not only classical solutions u ∈ C2(B1)∩C1(B1) but also harmonic
solutions u = ℜF admitting the boundary values m(ϕ) almost everywhere (a. e.)
on S1 : |∇u| = m(ϕ) a. e. on [−π, π] ∋ ϕ, m(ϕ) being measurable, m(ϕ) > 0 a.e.

We also discuss (1) in the case when the corresponding domain is an annulus
and find explicit formulas for some solutions. Because of the lack of space we
omit the details and the corresponding proofs.

There is an exuberance of classical papers and monographs dealing with dif-
ferent aspects of the boundary behaviour of regular functions in B1 and the
corresponding functional spaces. We quote a small part of them here, namely the
monographs containing the results to be directly applied in our paper: [4], [5],
[7], [8], [9], [12], [13], [14].

2. Formulation of the main results

To begin with, we shall propose three definitions useful in studying the bvp (1).

Definition 1. The function u ∈ C2(B1)∩C
1(B̄1) is called a classical solution

of (1).

Definition 2. The function u satisfies the bvp (1) if u ∈ C2(B1) ∩ C0(B̄1)
and |∇u| ∈ C0(B̄1).
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Definition 3. The harmonic in B1 function u satisfies (1) if u ∈ C0(B̄1)
and a. e. on S1 there exist the non-tangential (angle) boundary values
limB1∋(x,y)→(x0,y0)∈S1

ux(x, y) = (ux)
∗(x0, y0) and limB1∋(x,y)→(x0,y0)∈S1

uy(x, y) =
(uy)

∗(x0, y0), (ux)
∗, (uy)

∗ being measurable on S1 and |(∇u)∗|(x0, y0) = m(x0, y0)
a. e. on S1.

Theorem 1. (Existence results)
(i) The bvp (1) possesses a solution u in the sense of Definition 3 if logm ∈ L1

for m ∈ Lp, 1 ≤ p < ∞ and m > 0 a. e.
(ii) The bvp (1) has a classical solution u if 0 < m(ϕ) ∈ C1(S1).
(iii) The bvp (1) has a solution in the sense of Definition 2 if m ∈ C0(S1),

0 < m(ϕ) for ϕ 6= ϕk, k = 1, . . . , n, m(ϕk) = 0 for k = 1, . . . , n and logm(ϕ) ∈
L1 (equivalently,

∫ π
−π log

−m(ϕ)dϕ > −∞).
(iv) The bvp (1) possesses a classical solution if m ∈ C1(S1), 0 < m(ϕ) for

ϕ 6= ϕ1, . . . , ϕk, m(ϕk) = 0 for k = 1, . . . , n and
∫ π
−π log

− m(ϕ)dϕ > −∞.
(v) Let E ⊂ S1 be an arbitrary closed subset of S1 of measure zero containing

infinitely many points. Then one can find a function m ∈ C1(S1), m|E = 0,
m > 0 on S1 \ E, logm ∈ L1(−π, π), and such that (1) possesses a classical
solution for this boundary data m.

As usual, log+ x = max(log x, 0), log− x = min(0, log x, 0) for x > 0.
Remark. Consider bvp (1) and suppose that 0 < m(ϕ + 2π) = m(ϕ), ∀ϕ

and logm(ϕ) can be prolonged analytically in the strip ϕ + ih, |h| ≤ ε0. Then
(1) has a harmonic solution in the disc B1+

ε0
2

, ε0 > 0.

The bvp does not possess unique solution.
Example 1. Let m ≡ 1. Then (1) possesses infinitely many classical so-

lutions. To verify this we look for a regular function F (z) in B1, F 6≡ const,
F ∈ C0(B̄1) and such that |F ||S1

= 1. Certainly, there exists then z0 ∈ B1

such that F (z0) = 0. Let F be a rational function. It is well known then that
F (z) = eiγzm

∏n
k=1

z−αk

1−ᾱkz
, where γ ∈ R is a constant, m, n are non-negative inte-

gers, 0 6= αk ∈ B1, k = 1, . . . , n. F (z) is a finite Blascke product and
∣

∣

∣

z−αk

1−ᾱkz

∣

∣

∣ = 1

for |z| = 1. Consider the holomorphic function g(z) =
∫ z
0 F (λ)dλ, |z| < 1 + ε0,

ε0 > 0 and define u(x, y) = ℜg ∈ C1(B1+ε0) ∩ C2(B1). Evidently, ∆u = 0 in
B1, g

′(z) = ux + ivx = ux − iuy if g(z) = u + iv. Therefore, |∇u| = |g′(z)| in
B1+ε0 ⇒ |∇u||S1

= |F ||S1
= 1.

Let the regular functions F ′
1, F

′
2 in B1 be defined by the formulas

F ′
1(z) = P1(z)P2(z)h1(z)(2)

F ′
2(z) = P1(z)P2(z)h2(z),(3)
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where h1,2 are regular in |z| < 1, h1,2 ∈ C0(B1), h1,2(z) 6= 0 in B̄1, P1(z) =
∏m

j=1(z − aj), |aj | < 1, multiple roots of the polynomial P1 being admissible

and P2(z) =
∏n

j=1(z − bj)
αj , αj > 0, |bj | = 1, j = 1, . . . , n, i.e. P2 ∈ C0(B1)

(Definition of the branches of (z − bj)
aj in B1 and their link with the conformal

mappings B1 → Polygons ⊂ C1 can be found in [5]). Below we discuss the
uniqueness problem for solutions with prescribed zeroes in B̄1.

Theorem 2. (Uniqueness) Assume that u1 and u2 satisfy (1) in the sense of
Definition 1 and can be found in the form ui = ℜFi, where F ′

i are given by (2)
and (3). Then F1(z) = F2(z)e

iγ + C for some constants γ ∈ R1 and C ∈ C1.

Combining Theorem 1 (ii) and Theorem 2, we can construct solution v of the
bvp (1) having boundary data n(ϕ) = |P1(ϕ)||P2(ϕ)|m(ϕ), 0 < m(ϕ) ∈ C1(S1).
Consequently 0 < m ∈ C0(S1) gives rise to solutions with gradient vanishing at
finitely many points of the unit circle S1 and on finitely many points of the unit
disc.

Below is the proof of the Theorem 2.
P r o o f. Having in mind that F ′

1,2 ∈ C0(B̄1) ⊂ H1 ⇒ F1,2 ∈ C0(B̄1) we can

construct classical solutions u1,2 ∈ C1(B1) of (1) via the formula u1,2 = ℜF1,2 as
u1,2x − iu1,2 y = F ′

1,2 in B1. Evidently, |∇u1,2||
B1

= |F ′
1,2||

B1

, |∇u1,2||S1
= m ≥ 0,

m(ϕ) = 0 ⇔ bj = eiϕj , j = 1, . . . , n.

Consider now the regular function in B1: β(z) =
F ′

1
(z)

F ′

2
(z) = h1(z)

h2(z)
, β ∈ C0(B̄1),

|β| > 0 in B1, |β|
∣

∣

∣

S1

= 1. Then log β(z) = log |β(z)| + i arg β(z) = τ + iθ in B1,

τ ∈ C0(B̄1) ⇒
∆τ = 0 in B1

τ |S1
= 0

⇒ τ ≡ 0 ⇒ θ = γ = const ∈ R1 according to the

Cauchy-Riemann equations in B1: θx = τy, θy = −τx, i.e. β(z) = eiγ ⇒ F1(z) =
F2(z)e

iγ + C, C = const.
In other words the classical solutions of (1) constructed via the formula u =

ℜF and having finitely many prescribed zeroes by P1,2 in B1 are determined up
to a rotation and translation. �

3. Appendix

Fig. 1 is illustrating the geometrical configuration linearly perturbed saddle.
Thus, u1 = 2y(x + 1) is harmonic function in R2, while |∇u1| vanishes at S1

only. Other example is the bvp
∆u = 0 in B1

|∇u|2|S1
= n2 +m2A2 + 2nmA cos(n−m)ϕ

,

where n > m > 1 are integers, A > 0. We look for u(r, ϕ) = Re(zn + Azm),
z = reiϕ.
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Concluding remarks. To complete this paper we consider a bvp similar to
(1) but in the annulus A : {1 > |z| > r > 0}, i.e. in doubly connected domain in
R2.

∆u = 0 in A = {0 < r2 < x2 + y2 < 1}
|∇u|S1

= m1(ϕ) > 0
|∇u|Sr

= m2(ϕ) > 0
(4)

Sr = {x2 + y2 = r2}. Because of the lack of space we shall work rather formally.
We shall deal with analytic functions in the sense of Weierstrass. They could be
multivalued and are produced via analytical continuation of an element along a
curve. Below we remind a well known fact ([5], Chapter VIII).

Proposition 1. The function u(z) is harmonic in the multiconnected domain
D if and only if u(z) = ReF (z), where F (z)is analytic in D and satisfies the
conditions:

1. F ′(z) is regular in D;
2. The integral

∫

γ F
′(z)dz along any closed path γ ⊂ D is purely imaginary

number or 0, i.e.
∫

γ F
′(z)dz ∈ iR.

Figure 1

To solve (4) we are looking for a regular
in A function F ′(z) 6= 0, ∀z. Therefore,
F (z), log F ′(z) are analytic in A. Put u =
Re F . According to Proposition 1 ∆u = 0
in A iff: 1) F ′(z) is regular in A, and 2)
∫

γ
F ′(z)dz ∈ iR for each closed path γ ⊂

A. Then F ′(z) = ux(x, y) − iuy(x, y), z =
x + iy, (x, y) ∈ A ⇒ |F ′(z)| = |∇x,yu| ⇒
|F ′(z)||S1

= |∇u||S1
= m1(ϕ), |F

′(z)||Sr
=

m2(ϕ) (say if u ∈ C1(A)). Certainly,

logF ′(z) = log |F ′|+ i vararg F ′.(5)

Consider now the Dirichlet problem in A:

∆τ = 0 in A

τ |S1
= logm1

τ |Sr
= logm2

(6)

where τ = log |F ′| = ℜ log F ′(z), θ = varargF ′, F ′ = |F ′|eiθ. As it is well known,
there exists a unique classical solution of (6), say if 0 < m1,2 ∈ C0(S1, Sr),
+∞ > log |F ′| > −∞ in A. It can be expressed explicitly by the Green formula
and the Green function of the annulus A. The Green function in that special case
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can be constructed by using the method of inversions with respect to S1 and Sr

obtaining this way an infinite series. On the other hand let f be a regular function
in A, i.e. ∂f(z) = 0, and Φ(ϕ) = Re f(z) on S1, while Ψ(ϕ) = Re f(z) on Sr,

Φ, Ψ being prescribed in C0[−π, π]. Moreover, let

∫ π

−π
Φ(ϕ)dϕ =

∫ π

−π
Ψ(ϕ)dϕ.

Then according to Villa (see [1], Chapter XI)

f(z) = iω
π2

∫ π
−π Φ(ϕ)ζ

(

ω
πi

log z − ω
π
ϕ
)

dϕ− iω
π2×

×
∫ π
−π Ψ(ϕ)

[

ζ
(

ω
πi
logz − ω

π
ϕ− ω

′

)

+ η
′

]

dϕ+ iC,
(7)

where ζ(w) is the Weierstrass ζ function, C is an arbitrary real constant, ω > 0

is arbitrary, ω′ ∈ iR is s.t. eπi
ω′

ω = r, ζ(w + 2ω′) = ζ(w) + 2η′. As we know,
ζ
′

= −ρ, ρ being the famous Weierstrass ρ function. Conversely, (7) gives a
regular solution of ∂f = 0, Re f |S1

= Φ, Re f |Sr
= Ψ. Taking v = Re f we get

an explicit formula for the solution of the Dirichlet bvp

∇v = 0inA
v|S1

= Φ(ϕ)
v|Sr

= Ψ(ϕ).

Applying again Proposition 1 to (5) with τ = log |F ′(z)| = Re log F ′(z), log F ′(z)
being possibly multivalued analytic in A, we conclude that: 1) d

dz
logF ′ is regular

in A, and 2)
∫

γ
d
dz

log F ′(z)dz ∈ iR for each closed path γ in A.

Therefore, F ′′

F ′
is regular (obviously) and

∫

γ
F ′′(z)
F ′(z) dz ∈ iR.

Proposition 2. The bvp (4) possesses a solution u of the form u = Re F (z),
where F (z) is some analytic function in A if the following conditions hold true:
F ′(z) is regular in A, F ′(z) 6= 0 in A,

∫

Sr1
F ′(z)dz ∈ iR,

∫

Sr1

F ′′

F ′
dz ∈ iR for

some r1 ∈ (r, 1), log |F ′(z)| verifies (6) and
∫ π
−π logm1dϕ =

∫ π
−π logm2dϕ.

In the special case F ′, F ′′ ∈ C0(A), F ′ 6= 0 in A we can assume that
∫

S1
F ′(z)dz ∈ iR1,

∫

S1

F ′′

F ′
dz ∈ iR1.

Let at z0 6= 0,∞ be prescribed the value log z0 and the curve γ joins z0, z.
Then the analytic continuation along γ gives: logz = log |z|+i [ℑ(log z0) + ∆γ arg z],
∆γ is the increment of arg z along γ.

4. Possible generalizations of the previous results for different

bounded simply connected domains

Let f : D → B1 be a conformal mapping, where f is regular and univalent, while
∂D ∈ Ck,α, k ∈ N, 0 < α < 1; w = f(z), z = x+ iy ∈ D, w = ξ + iη ∈ B1.
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Then according to S.E. Warschawski (see Proc. AMS, vol. 12:4, 1961, pp.
614-620) f(z) and f−1(w) can be prolonged to functions belonging to Ck,α(D̄),
respectively Ck,α(B̄1) with f

′

6= 0 in D̄, (f−1)
′

6= 0, in B̄1.

In general, such a continuation is impossible for k = 1, α = 0.

Assume now that D1 and D2 are two bounded multiconnected domains in
C1, ∂D1, ∂D2 ∈ Ck,α, k ∈ N, 0 < α < 1 which are conformly equivalent via
the regular univalent function f(z) = w. Then again f , f−1 can be prolonged
to functions belonging to Ck,α(D̄1), respectively to Ck,α(D̄2) and f

′

6= 0 in D̄1,
while (f−1)

′

6= 0 in D̄2.

Consider the bvp
∣

∣

∣

∣

∣

∆x,yu = 0 in D

|∇x,yu|
∣

∣

∣

∂D
= m on ∂D,

(8)

By using the change z = f−1(w) and putting

∣

∣

∣

∣

∣

x = x(ξ, η), (ξ, η) ∈ B̄1

y = y(ξ, η), (ξ, η) ∈ B̄1,
,

ũ(ξ, η) = u(x(ξ, η), y(ξ, η)) we get the bvp
∣

∣

∣

∣

∣

∣

∆ξ,ηũ = 0 in B1

|∇ξ,ηũ|
∣

∣

∣

S1

= m̃
√

(∂x
∂ξ
)2 + (∂x

∂η
)2
∣

∣

∣

S1

,
(9)

where m̃(ξ, η) = m(x(ξ, η), y(ξ, η)), (ξ, η) ∈ S1, x, y ∈ Ck,α(B̄1), |(f
−1)

′

(w)|2 =
(∂x
∂ξ
)2 + (∂x

∂η
)2 > 0 in B̄1.

The bvp (9) coincides with (1) that we studied in the first part of our paper.

Suppose now that D1 is doubly connected bounded domain having two con-

tours: ∂D
(1)
1 , ∂D

(2)
1 ∈ Ck,α which is conformly equivalent to the annulus A (see

Chapter V from [7]). Then in a similar way as in the case (8) we can reduce the
bvp

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆x,yu = 0 in D1

|∇x,yu|
∣

∣

∣

∂D
(1)

1

= m1(ϕ) > 0 on ∂D
(1)
1

|∇x,yu|
∣

∣

∣

∂D
(2)

1

= m2(ϕ) > 0 on ∂D
(2)
1

∂D
(1)
1 ∩ ∂D

(2)
1 = ∅

(10)

to the solvability of a bvp of the type (4).
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