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SWITCH-TIME DISTRIBUTIONS AND PROCESSES

Pavel Stoynov

A family of probability distributions and related to them processes known
as Switch Time distributions and processes (ST distributions and processes)
are presented and simulated. Here by switch time we denote the time of
sharp change of value of a stochastic process (jump) or sharp change of
some characteristics of a stochastic process (regime switch).

1. Introduction – additive processes, characterization and possi-
ble generalizations

With a given filtered probability space (Ω, F, Ft, P ), satisfying the usual con-
ditions, an (one- or d-dimensional) additive process is defined as a stochastic
process {X(t); 0 ≤ t <∞} which is càdlàg and satisfies the following conditions:

1. X(0) = 0;

2. The process has independent increments, i. e. for every sequence of
numbers 0 < t1 < t2 < · · · < tn the random variables

X(t1)−X(0),X(t2)−X(t1), . . . ,X(tn)−X(tn−1)

are independent;

3. The process is stochastically continuous (continuous in probability), i. e.

lim
t→s

X(t) = X(s),
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where the limit is taken in probability.

The additive processes are introduced by Lévy [3,4]. Their properties are
studied by Sato [5]. In Sato [5], the following theorem is presented:

Theorem (Sato). Let {X(t); t ≥ 0} be an additive process with values in
Rd. Then:

1. For every t ≥ 0 the random variable X(t) has infinitely divisible distribu-
tion.

2. The distribution of {X(t); t ≥ 0} is uniquely identified by its point charac-
teristics {(A(t), µ(t),Γ(t)); t ≥ 0}, which are related to the characteristic function
in the following way:

EeiuX(t) = eψ(u,t)

and

ψ(u, t) = −
1

2
uA(t)u+ iuΓ(t) +

∫

Rd

µ(t, dx)(eiux − 1− iux1|x|≤1).

The point characteristics of the additive process satisfy the properties:

2.1. For every t ≥ 0, the matrix A(t) is positive definite matrix with
dimension d × d, Γ(t) is a function with values which are vectors in Rd and
µ(t, dx) is a positive measure in Rd, satisfying the conditions µ(t, 0) = 0 and
∫

Rd

min(|x|2, 1)µ(t, dx) <∞.

2.2. A(0) = 0, µ(0, dx) = 0,Γ(0) = 0 and for all t ≥ s ≥ 0 the matrix
A(t)−A(s) is a positive definite matrix with dimension d×d and µ(s,B) ≤ µ(t, B)
for all measurable sets B ∈ B(Rd).

2.3. If s → t, then A(s) → A(t),Γ(s) → Γ(t), µ(s,B) → µ(t, B) for all
measurable sets B ∈ B(Rd), for which B ⊂ {x : |x| ≥ ǫ} for some ǫ > 0.
Conversely, for the family triples {(A(t), µ(t),Γ(t)), t ≥ 0}, which satisfies 2.1.,
2.2. and 2.3. there is an additive process {X(t); t ≥ 0} with the corresponding
point characteristics.

Important special cases of the additive processes are the processes for which
there exists the following parametric representation of the point characteristics:

1. A(t) =

∫ t

0
σ2(s)ds, where for every t ≥ 0 the matrix σ(t) is a real matrix

with dimension d× n for which

∫ T

0
σ2(t)dt < ∞ for fixed T > 0, such that σ(t)

is defined in the interval [0, T ].
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2. µ(t, B) =

∫ t

0
ν(s,B)ds, for all measurable sets B ∈ B(Rd), where {ν(t), t ∈

[0, T ]} is a family of Lévy measures satisfying the condition

∫ T

0

∫

Rd

min(|x|2, 1)ν(t, dx)dt <∞.

3. Γ(t) =

∫ t

0
γ(s)ds, where γ : [0, T ] → R is a deterministic function with

values in the set R of real numbers and finite variation.

For the triple (σ2(t), ν(t), γ(t)) we say that it defines the local characteristics
of the additive process.
The additive processes with local characteristics are semimartingales.
From now on, we will consider one-dimentional processes, i.e processes with values
in R – the set of real numbers.
There are different possibilities for generalization of the additive processes. One
way of generalization is to introduce jumps in deterministic moments, as proposed
by Kallsen [2]. In this way, the process is not already stochastically continuous.
To characterize such kind of processes, to the point and local characteristics there
is a need to add new characteristics identifying the position and the size of these
deterministic-time jumps. The point characteristics become

{(Θ,K(t), A(t), µ(t),Γ(t)), t ≥ 0},

where Θ is a discrete set giving the times of the jumps and K(t) is conditional
distribution of the jumps for which

K(t,G) = µ(t,G) + ǫ0(G)(1 − µ(t, R)), t ∈ Θ

where R is the set of real numbers and

K(t,G) = 0, t /∈ Θ.

Here ǫ0(G) is the Dirac measure in the point zero. In the case when local char-
acteristics exist we have

{(Θ,K(t), A(t) =

∫ t

0
σ2(s)ds, µ(t,G) =(1)

=

∫ t

0
ν(s,G)ds +

∑

s∈Θ∩[0,t]

µ(s,G) =
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=

∫ t

0
ν(s,G)ds +

∑

s∈Θ∩[0,t]

K(s,G\{0}),

Γ(t) =

∫ t

0
γ(s)ds +

∑

s∈Θ∩[0,t]

∆Γ(s) =

=

∫ t

0
γ(s)ds +

∑

s∈Θ∩[0,t]

∫

xK(s, dx)), t ≥ 0},

and the local characteristics are:

{(Θ,K(t), σ2(t), ν(t), γ(t)), t ≥ 0}.

A next step of generalization is to allow stochastic characteristics - drift, volatility
and jump intensity. The corresponding processes are considered for example by
Grigelionis [1]. In this case, the point characteristics of the process are

{(A(ω, t), µ(ω, t,G),Γ(ω, t)), t ≥ 0}

and the local characteristics (when they exist) are

{(σ2(ω, t), ν(ω, t,G), γ(ω, t)), t ≥ 0}.

The obtained characterization allows to specify also some specific jumps in ran-
dom times and to characterize them separately from the remaining jumps of the
process. In this case, the point characteristics can be presented as:

{(Θ(ω, t),K(ω, t), A(ω, t), µ(ω, t,B),Γ(ω, t)), t ≥ 0}

where the random times of the specific jumps are represented by the point process
{Θ(ω, t), t ≥ 0}.
It is also possible to combine specific jumps in specific random times with jumps
in deterministic moments. In this case, the parameters of the process (in the case
when local characteristics exist) are:

{(Θ1,Θ2(ω, t),K1(ω, t),K2(ω, t), A(ω, t) =(2)

=

∫ t

0
σ2(ω, s)ds, µ(ω, t,B) =

=

∫ t

0
ν(ω, s,B)ds+

∑

s∈Θ∩[0,t]

K1(ω, θi, B\{0}) +
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+
∑

θi<t

K2(ω, θi, B\{0}),Γ(ω, t) =

=

∫ t

0
γ(ω, s)ds +

∑

s∈Θ∩[0,t]

∫

xK1(ω, θi, dx) +
∑

θi<t

∫

xK2(ω, θi, dx)), t ≥ 0}.

Here K1(ω, t) and K2(ω, t) are the conditional distributions of the jumps in de-
terministic and specific random times correspondingly.

2. Additive processes with returns to zeros

An example for a process with specific jumps in specific random times are the
so called additive processes with returns to zero (or to a fixed level). They are
processes X(t) = G(t)+J(t), where G(t) is an additive process and J(t) is a pure
jump process giving the returns to zero (or other fixed level).

The return to zero are restrictive conditions for the specific jumps leading to
more precise characterization.

Theorem 1. Let X(t) = G(t) + J(t) be an additive process with returns to
zero. Then we have

K(t, B) =

{

ǫ−X(t−)(B), t ∈ Θ

0, t 6∈ Θ,

µ(t, B) = µG(t, B) +
∑

s∈Θ∩[0,t]

ǫ−X(s−)(s,B\{0}),

Γ(t) = ΓG(t)−
∑

s∈Θ∩[0,t]

X(s−),

where Θ is the set of the times at which the process J(t) has jumps, µG(t, B) and
ΓG(t) are the corresponding characteristics of the additive process G(t).

P r o o f. We have K(t, B) = P∆X(t)|Ft−(B), i. e. K(t, B) is the conditional
distribution of the jumps. For the jumps leading to zero we have:

∆X = X(t) −X(t−) =

{

0−X(t−) = −X(t−), t ∈ Θ
G(t)−G(t−), t 6∈ Θ.

Then

K(t, B) =

{

ǫ−X(t−)(B), t ∈ Θ

0, t 6∈ Θ.
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At the points of Θ for processes with returns to zero we have:
∑

s∈Θ∩[0,t]

K(s,B\{0}) =
∑

s∈Θ∩[0,t]

ǫ−X(s−)(s,B\{0}).

Then

µ(t, B) = µG(t, B) +
∑

s∈Θ∩[0,t]

K(s,B\{0}) =(3)

= µG(t, B) +
∑

s∈Θ∩[0,t]

ǫ−X(s−)(s,B\{0}).

We have also:
∫

xK(s, dx) =

∫

xǫ−X(s−)(dx) = −X(s−).

So:

Γ(t) = ΓG(t) +
∑

s∈Θ∩[0,t]

∆Γ(s) =(4)

= ΓG(t) +
∑

s∈Θ∩[0,t]

∫

xK(s, dx) = ΓG(t)−
∑

s∈Θ∩[0,t]

X(s−). �

When the processes with return to zero admit local characteristics, we have

{(Θ,K(t, B), A(t) =

∫ t

0
σ2(s)ds, µ(t, B) =

∫ t

0
ν(s,B)ds+(5)

+
∑

s∈Θ∩[0,t]

µ(s,B) =

∫ t

0
ν(s,B)ds+

∑

s∈Θ∩[0,t]

K(s,B\{0}) =

=

∫ t

0
ν(s,B)ds+

∑

s∈Θ∩[0,t]

ǫ−X(s−)(B\{0}),

Γ(t) =

∫ t

0
γ(s)ds+

∑

s∈Θ∩[0,t]

∆Γ(s) =

=

∫ t

0
γ(s)ds−

∑

s∈Θ∩[0,t]

X(s−)), t ≥ 0}

and the corresponding local characteristics are:

{(Θ,K(t, B), σ2(t), ν(t), γ(t)), t ≥ 0}.
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Additive processes with returns to zero at deterministic times in the specific case
of Brownian motion are considered for example by Stoynov [6,7]. In this article,
we consider an example with a modified Poisson process with specific jumps at
specific random times leading to returns to non-negative integer levels (zero, one
etc.).

3. Switch time family of distributions STF (n, β)

We say that a random variable ξ with probability mass function fξ(x) has dis-
tribution of ST (n, β) family and denote this fact ξ ∈ ST (n, β) if the probability
mass function of ξ is given by the formula:

fξ(x) =







































n+1
∑

k=1

fDn,ξ(k, x) =
n+1
∑

k=1

P (Dn = k)fξ(x|D
n = k) =

=
n+1
∑

k=1

P (Dn = k)fGk(x), t ≥ 0

0, x < 0

where Gk are random variables with probability mass function fGk(x) = f(k, β)
and Dn are discrete random variables.
Different choices of the variables Gk and Dn lead to different kinds of switch time
distributions.
In this article, we consider switch time distributions of first kind. For these
distributions,

(6) Gk ∈ Γ(k,
1

β
) ≡ Erlang

(

k,
1

β

)

i.e.

ξ|Dn ≡ Erlang

(

Dn,
1

β

)

.

Correspondingly, for Dn we have:

(7) P (Dn = k) =
C(n, β)n!

βk(n − k + 1)!
, k = 1, 2, . . . , (n+ 1)

where the coefficients C(n, β) are given by the formulas:

C(n, β) =
1

I(n, β)
,(8)
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I(0, β) =
1

β
,

I(n, β) =
1

β
+
n

β
I(n− 1, β), n = 1, 2, . . .

Also, variables D̃n = Dn − 1 can be introduced for which:

P (D̃n = k) =
C(n, β)n!

βk+1(n− k)!
, k = 0, 1, . . . , n.

Then the probability mass function fξ(x) of ξ may be presented also by the
formula:

fξ(x) =











n
∑

k=0

P (D̃n = k)fξ(x|D̃
n = k) =

n
∑

k=0

P (D̃n = k)fGk+1(x), t ≥ 0

0, x < 0.

The class of switch time distributions of first kind we will denote ST1(n, β).

Theorem 2. Let ξ ∈ ST1(n, β). Then its probability mass function can be
presented as

fξ(x) =

{

C(n, β)e−βx(1 + x)n, x ≥ 0
0, x < 0.

P r o o f. We have:

C(n, β)e−βx(1 + x)n = C(n, β)e−βx
n
∑

k=0

(

n

k

)

xk =(9)

=

n
∑

k=0

C(n, β)n!

βk+1(n− k)!

βk+1xke−βx

k!
=

=

n
∑

k=0

P (Dn = k + 1)fGk+1(x) =

=

n+1
∑

k=1

C(n, β)n!

βk(n− k + 1)!

βkxk−1e−βx

(k − 1)!
=

=

n+1
∑

k=1

P (Dn = k)fGk(x) = fξ(x). �

Special cases of ST1(n, β) distribution are ST1(0, β) ≡ Exp(β) and
ST1(1, β) ≡ Lindley(β). The case n = 2 is introduced by Stoynov [8] and fur-
ther generalized in some other publications of the author, for example [9], where
Moment Generating Function of ST1(2, β) is derived.
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4. Switch time family processes

We say that a process X(t) is switch time process of first kind or ST1(n, β)
process and denote this fact X(t) ∈ ST1(t;n, β), if:

1. X(0) = 0.
2. X(t) is pure jump process with jumps at times Ti, i = 1, 2, . . . and jump

sizes ∆X(Ti) = 1.
3. The intervals between two jumps are

τi = Ti − Ti−1 ∈ ST1(n− 1, β), i = 0, 1, . . . , T0 = 0.

We say that X(t) is compound ST1(n, β) process, if we condition 3. by condition:
3’. X(t) is pure jump process with jumps at times Ti, i = 1, 2, . . . and jump

sizes ∆X(Ti) = Yi, where Yi are independent and identically distributed random
variables.

Switch time processes of first kind can be used to model different phenomena
in nature and society. Let us for example consider a company which can switch
its policy (for example income or expense rate). Those switches can happen
during meetings of board of managers. At every meeting, there is a decision to
keep the policy (variable, characteristic of the activity) as it is or to switch its
value (jump of the characteristic). If the time intervals between the meetings are
exponentially distributed independent variables and the switch occurs after Dn−1

meetings, the characteristic, related to the policy, follows an ST1(n, β) process.

Theorem 3. Let N(t) be a homogeneous Poisson process with intensity β
and jumps at times Zi, i = 1, 2, . . .. Let n be a positive integer and Dn−1

j ,
j = 1, 2, . . . be a sequence of independent random variables with the distribution
of Dn−1 (as in (7)). Let NR(t) be the corresponding Poisson process with returns
to zero at times Zi, i = 1, 2, . . . ,Dn−1

1 − 1, returns to level one at times Zi,
i = Dn−1

1 + 1,Dn−1
1 + 2, . . . ,Dn−1

1 + Dn−1
2 − 1, and so on, returns to level k at

times Zi, i =
k

∑

j=1

Dn−1
j + 1,

k
∑

j=1

Dn−1
j + 2, . . . ,

k+1
∑

j=1

Dn−1
j − 1, and so on. Then

NR(t) is a ST1(n, β) process.

P r o o f. We have by definition that NR(0) = 0. As the defined returns to lev-
els 0, 1, . . . eliminate part of the jumps of N(t), the only remaining jumps of NR(t)

are at times Zi, i = Dn−1
1 = S1,D

n−1
1 +Dn−1

2 = S2, . . . ,

m
∑

j=1

Dn−1
j = Sm, . . . . We

denote ZSm
= Tm. The sizes of the jumps at times Tm are ∆NR(Tm) = 1.
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The intervals between two consecutive jumps of NR(t) are τm = Tm − Tm−1 =

ZSm
− ZSm−1

=

Dn−1
m
∑

r=1

ξmr where ξmr , r = 1, . . . ,Dn−1
m are independent exponen-

tially distributed random variables with intensity β. Then τm = Tm − Tm−1 ∈

Erlang(Dn−1
m ,

1

β
) ≡ ST1(n− 1, β). This finalizes the proof. �

Theorem 4. Let N(t) be a compund Poisson process with intensity β and
jumps with independent identically distributed sizes Yi, i = 1, 2, . . . at times Zi,
i = 1, 2, . . .. Let n be a positive integer and Dn−1

j , j = 1, 2, . . . be a sequence

of independent random variables with the distribution of Dn−1 (as in (7)). Let
NR(t) be the corresponding compound Poisson process with returns to zero at
times Zi, i = 1, 2, . . . ,Dn−1

1 − 1, returns to level one at times Zi, i = Dn−1
1 +

1,Dn−1
1 + 2, . . . ,Dn−1

1 + Dn−1
2 − 1, and so on, returns to level k at times Zi,

i =

k
∑

j=1

Dn−1
j + 1,

k
∑

j=1

Dn−1
j + 2, . . . ,

k+1
∑

j=1

Dn−1
j − 1, and so on. Then NR(t) is a

compound ST1(n, β) process.

P r o o f. The proof is analogous to the proof of Theorem 2 with the only
difference that the sizes of the jumps at times Tm are ∆NR(Tm) = YTm . �

The integral (point) characteristics of the process NR(t) in the case of The-
orem 3 are:

{(Θ(ω, t),K(ω, t), A(ω, t) = 0,(10)

µ(ω, t,B) = tβf(B) +
∑

θi<t

K(ω, θi, B\{0}) =

= tβf(B) +
∑

θi<t

ǫ−1(B\{0}),

Γ(ω, t) =
∑

θi<t

∫

xK(ω, θi, dx) = −
∑

θi<t

1 =

= −|Θ ∩ [0, t]|), t ≥ 0}

where Θ(ω, t) ≡ {θi, i = 1, 2 . . .} ≡ {Zi, i = 1, 2 . . .}\{Tm, m = 1, 2 . . .} and

K(ω, t,B) =

{

ǫ−1(B), t ∈ Θ
0, t 6∈ Θ.

The corresponding local characteristics are:

{(Θ(ω, t),K(ω, t,B), A(ω) = 0, ν(ω,B) = 0, γ(ω) = βf(B)), t ≥ 0}.
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The integral (point) characteristics of the process NR(t) in the case of Theorem
4 are:

{(Θ(ω, t),K(ω, t), A(ω, t) = 0,(11)

µ(ω, t,B) = tβf(B) +
∑

θi<t

K(ω, θi, B\{0}) =

= tβf(B) +
∑

θi<t

ǫ−Yi(B\{0}),

Γ(ω, t) =
∑

θi<t

∫

xK(ω, θi, dx) = −
∑

θi<t

Yi), t ≥ 0}

where Θ(ω, t) ≡ {θi, i = 1, 2 . . .} ≡ {Zi, i = 1, 2 . . .}\{Tm, m = 1, 2 . . .} and

K(ω, t,B) =

{

ǫ−Yi(B), t ∈ Θ
0, t 6∈ Θ.

The corresponding local characteristics are:

{(Θ(ω, t),K(ω, t,B), A(ω) = 0, ν(ω,B) = 0, γ(ω) = βf(B)), t ≥ 0}.

Based on Theorem 3 and Theorem 4, it is possible to simulate ST1(n, β) process.

5. Simulation of ST1(n, β) process

The simulation of ST1(n, β) distribution and corresponding PMF graphics for
different values of the parameters n and β can be done by using R language. The
graphics for the case n = 100 and β = 2 is given in Fig. 1. The graphics for the
case n = 40 and β = 2 is given in Fig. 2.

To make simulation of ST1(n, β) process, the following algorithm can be
applied:

1. Define interval [0, T ] of the simulation.

2. k = 0.

3. While

k
∑

i=1

τi =

k
∑

i=1

(Ti − Ti−1) < T do:

3.1. Set k = k + 1.

3.2. Generate τi = Ti − Ti−1 ∈ ST (n− 1, β).

3.3. Set Yi = 1 for standard ST1(n, β) process or simulate Y based on a
given distribution f for compound ST1(n, β) process.
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Figure 1: The graphics of ST1(n,B) distribution for the case n = 100 and B = 2.

Figure 2: The graphics of ST1(n,B) distribution for the case n = 40 and B = 2.

Then the trajectory of X(t) ∈ ST (n, β) is given by the formula

X(t) =

N(t)
∑

i=1

Yi,

where
N(t) =

∑

i

1Ti<T .
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Figure 3: The graphics of a path of ST1(n,B) process for the case n = 6 and
B = 0.1.

The graphics of a trajectory of ST1(n, β) process for the case n = 6 and
β = 0.1 is given in Fig. 3.

6. Concluding remarks

The present work may be extended for example by studying other (than given in
(6)) choices of Gk.

For example, we may choose Gk ∈ NB(r, e−β). In this case,
ξ|Dn ≡ NB(Dn, e−β), and we obtain a distribution which we will call ST2(n, β)
distribution and denote ξ ∈ ST2(n, β).

As another example, we may consider Gk ≡ δk(x) - random variable which
takes value k with probability one. Then ξ ≡ Dn. In this case, we say that random
variable ξ has ST3(n, β) distribution and denote ξ ∈ ST3(n, β). ST1(n, β) pro-
cesses can be used in economic models to present events which appear with some
“larger” intervals between them compared to the intervals between the events
counted by the Poisson processes. For example, they can be used as intervals
between the last recovery and the start of the budget restriction in an oil com-
pany exploring oil fields [10]. Different applications of ST (n, β) processes are also
possible in financial and actuarial models.
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Villars, 1937 (in French).

[4] P. Levy. Processus Stochastiques et Mouvement Brownien. Sceaux, Edi-
tion Jacques Gabay, 1992.

[5] K. Sato. Levy processes and infinitely divisible distributions. Cambridge
Studies in Advanced Mathematics vol. 68. Cambridge, Cambridge Univer-
sity Press, 1999.

[6] P. Stoynov. An Approach to Wealth Modelling Serdica Math. J., 29, 3
(2003), 195–224.

[7] P. Stoynov. A special case of wealth motion. J. Math. Sci. (N. Y.) 121,
5 (2004), 2692–2697.

[8] P. Stoynov.Negative binomial distributions and applications. Proceedings
of Third International conference Financial and Actuarial Mathematics, 3
(2010), 12–20.

[9] P. Stoynov. Mixed Negative Binomial distribution by Weighted Gamma
mixing distribution. Math. and Education in Math. 40 (2011), 327–331.

[10] P. Stoynov. Switch Time Family of distributions and processes and their
applications to reflected surplus models. Annual of the Faculty of Eco-
nomics and Business Administration, Sofia University “St. Kliment Ohrid-
ski”, Sofia, 40 (2016), 255–285.

P. Stoynov

Sofia University

e-mail: todorov@feb.uni-sofia.bg


	Page 1

