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STUDIA MATHEMATICA

ON THE DECAY OF SOLUTIONS

TO A CLASS OF HARTREE EQUATIONS

Mirko Tarulli, George Venkov

We consider the Cauchy problem for the Hartree equation

(1)

{

iut +∆u− cd,γ [|x|
−γ ∗ |u|2]u = 0, (t, x) ∈ R+ × R

d,

u(0, x) = u0(x) ∈ H1(Rd),

with d ≥ 1, cd,γ > 0 and where 0 < γ < min(4, d). Then, we prove that
the global solution u(t, x) ∈ C(R;H1(Rd)) to (3) enjoys the following decay
property:

(2) lim
t→±∞

‖u(t, x)‖Lq(Rd) = 0, 2 < q <
2d

d− 2
.

1. Introduction

Consider the Cauchy problem associated to nonlinear defocusing Schrödinger
equations with Hartree-type nonlinearity (NLHS), for d ≥ 1:

(3)











i∂tu+∆xu− vu = 0, (t, x) ∈ R+ × R
d,

(−∆)α/2v = |u|2

u(0, ·) = u0 ∈ H1(Rd).

Here, u = u(t, x) : R×R
d → C, and 0 < α < d. Let us solve the elliptic equation,

v = (−∆)−α/2[|u|2] = Iα[|u|
2] = Iα(·) ∗ |u|

2,
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with

Iα(x) =
Γ(d−α2 )

Γ(α2 )π
d/22α|x|d−α

.

We obtain the system

(4)

{

iut +∆xu− cd,γ [| · |
−γ ∗ |u|2]u = 0, (t, x) ∈ R+ × R

d,
u(0, x) = u0(x),

where we have introduced the parameter γ := d− α and cd,γ > 0 defined by

cd,γ =
Γ(d−α2 )

Γ(α2 )π
d/22α

.

We denote
H1(Rd) = (1−∆x)

−
1
2L2(Rd),

indicating by f ∈ Lq(Rn), for 1 ≤ q <∞, if

‖f‖q
Lq(Rd)

=

∫

Rd

|f(x)|q dx < +∞.

The solution u associated to (4) satisfies two conservation laws:

‖u(t)‖L2
x
= ‖u0‖L2

x
,(5)

E(u(t)) = E(u0),(6)

with

E(u) =
1

2

∫

Rd

|∇u(x)|2dx+
cd,γ
4

∫

Rd

∫

Rd

|u(x)|2|u(y)|2

|x− y|γ
dxdy.

It is possible to investigate some relevant mathematical questions as:

a) Local and global existence as well as the persistence of regularity for the map
data-solution u0 → u(t, ·), assuming the initial data in the space H1(Rd).
This forces to 0 < γ < min(4, d).

b) The long-time behavior of the solutions to (4) in the space Lq(Rd) (which
leads to the scattering in the energy space H1(Rd)).

With regard to the point a), that is the study of the global well-posedness, we
remand to [7] (and references therein) for a comprehensive overlook on the ar-
gument. We concentrate our attention on the point b). Thus we state our main
results about the decay of solution to (4) (problem b)), that is
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Theorem 1. Let u(t, x) ∈ C(R;H1(Rd)) be a global solution to (4) with 0 <
γ < min(4, d), with d ≥ 1. Then:

(7) lim
t→±∞

‖u(t, x)‖Lq(Rd) = 0,

provided that 2 < q <
2d

d− 2
.

We are motivated also by the Physics. In fact equations of type (4) play
an important role in describing the quantum mechanics of a polaron at rest,
the electron trapped in its own hole, the self-gravitating matter and the self
consistency effect of many electron systems in the context of Bohr theory.

A fundamental tool to study the properties like (7) for solutions to (4) is the
Morawetz multiplier technique and the resulting estimates. These were obtained
for the first time by K. Morawetz in [12] for the NLKG equation with a general
nonlinearity and were successively used for proving the asymptotic completeness
by J. Lin and W. Strauss [9], for the cubic NLS in R

3 and by Ginibre ad Velo [7]
(and references therein) for the NLS with pure power nonlinearity for 2/d < p <
2/(d− 2). Recently, a new approach simplified the proof of scattering. It consists
on the bilinear Morawetz inequalities (or interaction). We refer for instance to
the papers of Colliander, M. Grillakis, N. Tzirakis [2] and Ginibre, Velo [7] and
Planchon, Vega [14]. As far as concerns NLHS, Ginibre and Velo in [6] derived
the associated Morawetz inequality and extracted a useful Birman–Solomjak type
estimate to obtain the asymptotic completeness in the energy space. Nakanishi in
[13] improved the results by a new Morawetz estimate. For the critical case, Miao
et al. in [11] took advantage of a new kind of the localized Morawetz estimate to
rule out the possibility of the energy concentration at origin and established the
scattering results in the energy space for the radial data in dimension d ≥ 5. We
remand also to the paper [11] of Miao et al. for the case of general data in the
same space dimension framework of the previous one. We present here a peculiar
decay property to the solution of (4), mandatory to shed light on scattering states,
which arises from a combination of a localization trick, the nonlinear interaction
Morawetz estimate and interpolation. We underline that our version of the proof
strongly simplifies the various results already cited, moreover it guarantees to
treat in an unified manner all the space dimensions, namely d ≥ 1, allowed by
the condition 0 < γ < min(4, d).

2. Morawetz identities

We start with the first tool to prove the main Theorem 1: Morawetz equalities.
We introduce the following further notations: given a function f ∈ H1(Rd,C),
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we denote by

(8) mf (x) := |f(x)|2, jf (x) := ℑ
[

f(x)∇xf(x)
]

∈ C
d.

Then our main contribution is the following

Proposition 1. Let d ≥ 1 and u ∈ C(R,H1(Rd)) be a global solution to (4),
let φ = φ(x) : Rd → R be a sufficiently regular and decaying function, and denote

by

V (t) :=

∫

Rd

φ(x)mu(x) dx.

The following identities hold:

V̇ (t) =

∫

Rd

φ(x)ṁu(x) dx = 2

∫

Rd

ju(x) · ∇xφ(x) dx,(9)

V̈ (t) =

∫

Rd

φ(x)m̈uµ(x) dx = −

∫

Rd

mu(x)∆
2
xφ(x) dx(10)

+4

∫

Rd

∇xu(x)D
2
xφ(x) · ∇xu(x) dx

−cd,γ

∫

Rd

∫

Rd

∇xĪγ(x− y)|u(x)|2|u(y)|2∇xφ(x) dxdy,

with

(11) Īγ(x) =
1

|x|γ
,

for d ≥ 1, cd,γ > 0, with 0 < γ < min(4, d) and where D2
xφ ∈ Mn×n(R

d) is the

hessian matrix of φ, and ∆2
xφ = ∆x(∆xφ) the bi-laplacian operator.

P r o o f. We prove the identities for a smooth rapidly decreasing solution
u = u(t, x), letting the general case u ∈ C(R,H1(Rd)) to a final standard density
argument (see for instance [7], Appendix 4) We give the details for obtaining (10)
and from now on we shall drop the variable t for simplicity. An integration by
parts and (4), gives

2∂t

∫

Rd

ju(x) · ∇xφ(x) dx(12)
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= −2ℑ

∫

Rd

∂tu(x) (∆xφ(x)ū(x) + 2∇xφ(x) · ∇xū(x)) dx

= 2ℜ

∫

Rd

i∂tu(x) (∆xφ(x)ū(x) + 2∇xφ(x) · ∇xū(x)) dx

= 2ℜ

∫

Rd

(

−∆xu(x) + cd,γ [|x|
−γ ∗ |u(x)|2]u(x)

)

· (∆xφ(x)ū(x) + 2∇xφ(x) · ∇xū(x)) dx.

We have the following identity

2ℜ

∫

Rd

−∆xu(x) (∆xφ(x)ū(x) + 2∇xφ(x) · ∇xū(x)) dx(13)

= −

∫

Rd

∆2
xφ(x) |u(x)|

2 dx+ 4∇xu(x)D
2
xφ(x)∇xū(x) dx.

Moreover, one gets

cd,γℜ

∫

Rd

[|x|−γ ∗ |u(x)|2]u(x)∆xφ(x)ū(x) dx

+2cd,γℜ

∫

Rd

[|x|−γ ∗ |u(x)|2]u(x)∇xφ(x) · ∇xū(x) dx

= cd,γℜ

∫

Rd

[|x|−γ ∗ |u(x)|2]u(x)∆xφ(x)ū(x) dx

+cd,γℜ

∫

Rd

[|x|−γ ∗ |u(x)|2]∇xφ(x) · ∇x |u(x)|
2 dx.

Then we can write

2cd,γℜ

∫

Rd

[|x|−γ ∗ |u(x)|2]u(x)∆xφ(x)ū(x) dx(14)

+4cd,γℜ

∫

Rd

[|x|−γ ∗ |u(x)|2]u(x)∇xφ(x) · ∇xū(x) dx

= −2cd,γ

∫

Rd

∫

Rd

∇xĪγ(x− y)|u(x)|2|u(y)|2∇xφ(x) dxdy.

Combining now the identities (13) and (14), we arrive finally at (10). �

3. Interaction Morawetz identities and inequalities

This section is devoted to prove the bilinear Morawetz identities and inequalities.
Namely we have the following proposition.
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Proposition 2. Let u ∈ C(R,H1(Rd)) be a global solution to system (4), let
φ = φ(|x|) : Rd → R be convex radial function, regular and decaying enough, let

be ψ(x, y) := φ(|x− y|) : R2d → R and

I(t) :=

∫

Rd

∫

Rd

ψ(x, y)mu(x)mu(y) dxdy.

Then the following holds:

İ(t) = 2

∫

Rd

∫

Rd

ju(x, y) · ∇xψ(x, y)mu(y) dxdy,(15)

Ï(t)(16)

≥ 2

∫

Rd

∫

Rd

∆xψ(x, y)∇xmu(x) · ∇ymu(y) dxdy +N(d,γ,ψ),

with

N(d,γ,ψ)(17)

= 2

∫

Rd

∫

Rd

Īγ+2(x− y)mu(x)mu(y)(x− y)(k(x)− k(y)) dxdy

and

(18) k(·) = −cd,γ

∫

Rd

∆zψ(·, z)mu(z) dz.

P r o o f. As for the previous proposition, we prove the identities for a smooth
solution u, treating the general case u ∈ C(R,H1(Rd)) by a standard density
argument. First one has

İ(t) =

∫

Rd

∫

Rd

ṁu(x)mu(y)ψ(x, y) dxdy(19)

+

∫

Rd

∫

Rd

mu(x)ṁu(y)ψ(x, y) dxdy.

Then, due to the symmetry of ψ(x, y) = φ(|x− y|), we obtain

İ(t) = 2

∫

Rd

∫

Rd

ṁu(x)mu(y)ψ(x, y) dxdy.
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So, (15) follows by (9) and the Fubini’s Theorem. Analogously, we can differen-
tiate again and get the identity

Ï(t) =

∫

Rd

∫

Rd

m̈u(x)mu(y)ψ(x, y) dxdy

+

∫

Rd

∫

Rd

mu(x)m̈u(y)ψ(x, y) dxdy

+2

∫

Rd

∫

Rd

ṁu(x)ṁu(y)ψ(x, y) dxdy.

(20)

Then we write Ï(t) := A + B. By (10), an application of the Fubini’s Theorem
and using once again the symmetry of ψ(x, y) we are allowed to set

A =(21)

−2

∫

Rd

∫

Rd

mu(x)mu(y)∆
2
xψ(x, y) dxdy

+4

∫

Rd

∫

Rd

Īγ+2(x− y)mu(x)mu(y)(x− y)(k(x) − k(y)) dxdy,

with the function k defined as in (18). We reshape the linear term in the previous
identity (21) as follows

−2

∫

Rd

∫

Rd

mu(x)mu(y)∆
2
xψ(x, y) dxdy

= 2

∫

Rd

∫

Rd

mu(x)mu(y)∂x∂y∆xψ(x, y) dxdy(22)

= 2

∫

Rd

∫

Rd

∂xmu(x)∂ymu(y)∆xψ(x, y) dxdy,

by applying integration by parts (with no boundary terms) and using the property
∂xψ = −∂yψ. In conclusion, we get

A = 2

∫

Rd

∫

Rd

∆xψ(x, y)∇xmu(x) · ∇ymu(y) dxdy +N(d,γ,ψ).

(23)

Moreover by (9), (10) and the Fubini’s Theorem we introduce

B = 4

∫

Rd

∫

Rd

∇xu(x)D
2
xψ(x, y)∇xu(x)mu(y) dxdy



222 M. Tarulli, G. Venkov

+4

∫

Rd

∫

Rd

mu(x)∇yu(x)D
2
yψ(x, y)∇yu(y) dxdy

+8

∫

Rd

∫

Rd

ju(x)D
2
xyψ(x, y) · ju(y) dxdy,

where in the previous identity we took the advantage of the symmetry of D2ψ to
eliminate the real part condition in the first two summands of the equality above.
At this point, by using some rearrangements, integration by part and dispersion
properties of u we find out that

B = 2

∫

Rd

∫

Rd

D2
xφ(|x− y|)

[

C(x, y)C(x, y) +D(x, y)D(x, y)
]

dxdy,(24)

with C(x, y),D(x, y) defined as follows:

C(x, y) := u(x)∇yū(y) + ū(y)∇xu(x)

and
D(x, y) := u(x)∇yu(y)− u(y)∇xu(x).

Therefore the fact that that φ is a convex function give B ≥ 0. This argument
implies, in combination with (23), (24), the proof of (16). �

Remark. One notice that N(d,γ,ψ) ≥ 0. In fact from (17) we have that

k(x)− k(y) =

∫

Rd

mu(z)

(

x− z

|x− z|
−

y − z

|y − z|

)

dz.

Then one observes that (x− y)(k(x)− k(y)) ≥ ‖u‖2L2 , because of the elementary
inequality

(x− y) ·

(

x− z

|x− z|
−

y − z

|y − z|

)

≥ 0.

This lead to the following
∫

Rd

∫

Rd

Īγ+2(x− y)mu(x)mu(y)(x− y)(k(x) − k(y)) dxdy ≥ 0.(25)

At this point we need the following lemma, that is a straightforward conse-
quence of the inequality (16).

Lemma 1. Let u ∈ C(R,H1(Rd)) be a global solution to (4), for d ≥ 1. Then

one has
∫

R

∫

Rd

∫

Rd

∫

Rd

|u(t, x)|2|u(t, y)|2|u(t, z)|2

|x− y|γ+2
dx dy dy dt <∞,(26)

for any 0 < γ < min(4, d).
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P r o o f. Integrating (16) to time variable one obtains, by (15) and the above
remark, the following

2

[
∫

Rd

∫

Rd

ju(t, x) · ∇xψ(x, y)mu(t, y) dxdy

]t=T

t=S

(27)

≥ 2

∫ T

S

∫

Rd

∫

Rd

∆xψ(x, y)∇xmu(x) · ∇ymu(y) dxdydt

+ 2

∫ T

S

∫

Rd

∫

Rd

Īγ+2(x− y)mu(x)mu(y)(x − y)(k(x) − k(y)) dxdydt

= 2

∫ T

S

∫

Rd

∫

Rd

∆xψ(x, y)∇xmu(x) · ∇ymu(y) dxdydt

+ 2

∫ T

S

∫

Rd

∫

Rd

∫

Rd

|u(t, x)|2|u(t, y)|2|u(t, z)|2

|x− y|γ+2
dxdydzdt.

Now choose ψ(x, y) = |x−y|. For the l.h.s of the (27) we have the immediate
bound

2

[
∫

Rd

∫

Rd

ju(t, x) · ∇xψ(x, y)mu(t, y) dxdy

]t=T

t=S

≤ C‖u0‖
4
H1

x
<∞,(28)

for some C > 0 and any T, S ∈ R, since the H1
x-norm is a conserved quantity. By

this observation, we have

(29) ∆xψ =







n− 1

|x− y|
if d ≥ 2,

2δx=y (= D2
xψ) if d = 1,

we easily achieve the proof of (26) by letting T → ∞, S → −∞. �

4. Proof of main theorem

Finally we are in position to prove the main achievement of the paper by a
combined use of the results obtained in the previous sections. Specifically we
have the following

P r o o f o f T h e o r em 1. It is sufficient to prove that the property (7) for a

suitable 2 < q <
2d

d− 2
, since the thesis for the general case can be then obtained

by the conservation of mass (5), the kinetic energy in (6). and interpolation.
More precisely it is sufficient to show that

(30) lim
t→±∞

‖u(t, x)‖
L
2+4/d
x

= 0.
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Then the decay of the Lqx norm for all 2 < q <
2d

d− 2
follows by combining (30)

with the bound

(31) sup
t∈R

‖u(t, x)‖H1
x
<∞.

We write the following localized Gagliardo-Nirenberg inequality (see [1], for ex-
ample)

(32) ‖ϕ‖
2d+4

d

L
2d+4

d
x

≤ C

(

sup
x∈R3

‖ϕ‖L2(Qx)

)
4

d

‖ϕ‖2H1
x
,

where Qx is the unit cube in R
3 centered in x. Next, assume by the absurd that

(30) is false, then by (31) and by (32) we deduce the existence of a sequence
(tn, xn) ∈ R× R

d with |tn| → ∞ and ǫ0 > 0 such that

(33) inf
n

‖u(tn, x)‖L2(Qxn )
= ǫ0.

For simplicity we can assume that tn → ∞ (the case tn → −∞ can be treated by
a similar argument). Notice that by (9) in conjunction with (31) we get

sup
n,t

∣

∣

d

dt

∫

χ(x− xn)|u(t, x)|
2dx

∣

∣ <∞,

where χ(x) is a smooth and non-negative cut-off function taking values in [0, 1]
such that χ(x) = 1 for x ∈ Qd(0, 1) and χ(x) = 0 for x /∈ Q̃x, where Q̃x denotes
the cube in R

d of radius 2 centered in x. By combining this fact with (33), then
we get the existence of T > 0 such that

(34) inf
n

(

inf
t∈(tn,tn+T )

‖u(t, x, y)‖L2(Q̃xn )

)

≥ ǫ0/2.

Observe also that since tn → ∞ then we can assume (modulo subsequence) that
the intervals (tn, tn + T ) are disjoint. In particular we have

∑

n

T (ǫ0/2)
12

≤
∑

n

∫ tn+T

tn

∫

Q̃xn

∫

Q̃xn

∫

Q̃xn

|u(t, x)|2|u(t, y)|2|u(t, z)|2dxdydzdt

≤

∫

R

∫

Rd

∫

Rd

∫

Rd

|u(t, x)|2|u(t, y)|2|u(t, z)|2

|x− y|γ+2
dx dy dy dt
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and hence we get a contradiction since the left hand side is divergent and the
right hand side is bounded as in (26). Then the proof is completed. �
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