Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



ORDER OF BEST HAUSDORFF POLYNOMIAL APPROXIMATION
OF CERTAIN FUNCTIONS

BLAGOVEST H. SENDOV

The aim of this paper is to estimate the best approximation with algebraic polyno-
mials in Hausdorff distance of the functions
Palx)= x %

a

YalX)= x “sgnx,

Fa0) (1 — )

for 0<la<{l, on the interval [—1, 1]. While the best uniform polynomial approximation of
¢, ¥, and 6 depends essentially upon a, the best Hausdorff polynomial approximation

can be estimated in order by n=1, for ¢, and y_ or by n?% for 6, for every 0<la<l.

1. Hausdorff distance between continuous functions. Let f and g be
two continuous functions on the interval 4, i. e. f,g¢ C,. The Hausdorff
distance (or H-distance) between f and g is defined by

r(f, g)  max {_gza_l'x {réisll x—&|, | f(x)—&®) ), s rgleigl[ x—&|, | f(§)—g(x) |]}-

The definition and some properties of H-distance in the general case
can be found in [l], but the properties used in the paper will be given
here without proof; as usual the functions considered, are continuous.

Lemma 1. /If f,g¢C, and for every x,¢ A there exist x,, x,€4 for
which

max [ xo— x| flx)—g(x,) |- 6
and

max [| xo—X, |, | f(xa) —g(x,) ]= 6,

then r(f, g)<=9.
Lemma 2. lff fl)f'.’?gecl a’ld

H(X)=f(x) fo(x), x€4,

Si(x)=g(x)=fy(x), x¢€ 1,
then
r(f, &) =max [r(f, f,), r(f, fa)l-
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The relation between the uniform distance
R(f, 8)- A f(x)—g(x)

of two continuous functions and the Hausdorif distance is given by the
inequality

(n r(f,8) R(f,&)=r(f, 8 +o(r(f )

where (d) is the modulus of continuity of any of the functions f or g.

lLet F, be the set of algebraic polynomials of degree not higher than n.
The best Hausdorff approximation of f¢ C, by element of /7, is denoted by

Enr(f) =Pieﬂ’5 r(f, P).

The following proposition holds (1], [2]:
For every function f¢ C, we have

(2) E,...(f)=0O(Inn/n).

Furtherimore, as it is shown in [3], this order is exact for absolute conti-
nuous functions too.

The following proposition is proved in [4]:

If fis an analytic function in the circle z <1, f(z) =M for |z =1
and f(z) takes real values in the interval [—1, I], then

(3) E, (f) - O((In n/n)*)
and this estimate can not be improved in the class considered.
In this paper we shall prove that for the functions ¢. and . the esti-

mate (2) can be improved by Inz and the estimate (3) for the function
f, can be improved by (lnn)%

2. Oscillating polynomials. In order to determine the exact order of
uniform approximation of x| with algebraic polynomials 1 the interval
[—1,1], S. N. Bernstein used the polynomials, that he called oscillating po-
lynomials [5]. We give here the definition and some properties of these
polynomials, required further in the paper.

Definition [5]. The polynomial

P(x)- Apxo+Axat - L A,x%

is called an oscillating polynomial in [0, 1] corresponding to the sequence
of non-negative degrees a,<a,< - --<Ca,, if it reaches its maximal absolute
value in n+1 points of this interval. The number 7 is called order of the

oscillating polynomial.
We denote by A2 the uniform norm of P for the interval [0, 1],

' Pl'= max P(x).

O0=x-1
The following oscillating polynomials will be used
(4) Tau(X) —cos (2K arccos X) - (—1)*{1—2k2x2 4 ... L {—1)k2% Lx2¥},
(5) Tor . 1(x) cos((2k+1)arccos x)
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=(— 1) (2k+ ]){x— 2 k(k4 )X+ - - +(~l)k22kx2k“\‘

for which TQk‘ = T2k+| =1.

It is not difficult to prove, that the oscillating polynomial coefficients
have alternating signs and the adjacent extrema of the oscillating polyno-
mial have opposite signs [5].

S. N. Bernstein proved the following theorems [5]:

Theorem 1. /If P(x) ‘,_/‘_’A,-x“,- is an oscillating polynomial and

i=0
n

Q(x) le,-.\'"i is another polynomial of x of the same degrees and if
P(x) a’rzz0 Q(x) have one common coefficient A; =B, (where a;>0) then
P < Q..

Theorem 2. If for two oscillating polynomials
P(x) x0+A x4+ -+ A,X%,
Q(x) x“%+Bxf1+ ... LB, x¢,

the inequalities 0<Za,<p,<ay<Bo<---<f.<a, hold, then | Q| <|P .
We shall prove two other propositions for the oscillating polynomials:
Lemma 3. If P(x):x‘o—zwa,-x’f is an oscillating polynomial with

i=l1

degrees 0<Za,<<a,<< - -+ <a,, then

n
v(x) = Z a;x =0

i—1

for every x¢|0, &, where &, is the wvery left local extremum of P(x) in
the interval (0, 1].
Proof. Denote by

0<,‘:1<f‘3< R <5n<,=n+l” 1
the points, in which P(x) = P . It is evident, that

(6) P(&)  (—1)*" P for k=1,2,3,...,n+1
and
(7) P'(&e)=0 for k=1,2,3,...,n.

Denote further by u(x) the polynomial
(8) u(x)= xz,’(x)—ao'v(x)=‘l’b,x"/.
=1

According to Descartes’ rule, u(x) has no more than n—1 positive zeroes.
On the other hand from (6) and (7) we obtain
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(=1 (&) >05k=1,2,3,...,n,

and therefore u(x) has at least n—1 positive zeroes in the interval (&, &,)-

Hence, u(x)>0 in the interval (0, &), as u(%,)>>0. But then o(x)>0 for
x€(0, &) too. Indeed, if we suppose, that there exists a point ¢ (0, &) for
which o(n) 0, then there exists a point #,¢(0,&,) for which v(n,)>0, and
¥/(,)<<0. But from the latter inequalities and (8), it follows that u(s,)<0,
which is impossible. Thus the lemma is proved.

Lemma 4. If s--m, Pand Q are oscillating polynomials of the kind

P(X)=a,x*+ X"+ ay X+ - -« @, X,
Q(x)=xm+byx9+ - - - 4 bpxn,
then
P >(14+2s/im=s)=11 Q.

Proof. We shall use S. N. Bernstein’s method from [5]. Obviously for
every O-—u=1 and x¢[0, 1] the inequality
X \S X \m X \% X \% —
ao(l f.u) +(1ﬂ+u) +a (H—u) o +a"(1+ﬁ) =l £
holds, or
QpX* + (1+ a4 ap(l4 pp x| < (1L u) | P
Taking into account the form of P, we obtain from the last inequality
(Itpym— =1 xmtaixat - Fa,xn =(1+(1+u)) | P
and according to Theorem 1
PS4 wm—1 (1 (1)) Q).
In order to prove the lemma it is sufficient to put @— 2V im—si_1,

Using Theorems 1 and 2, S. N. Bernstein proved the following
Lemma 5. For the oscillating polynomial

Ru(x)=x+a x?>+asxt+ - - - +apx?

the inequalities
1

1 | 1
sy k1< Rel<g

hold.
Further we shall prove the following proposition
Lemma 6. For the oscillating polynomial
Ur(x) =X+ b X% +box? 4 - - - f-bpxtt]
the following inequalities hold

y (Bt 1) 2 <[ Ul <(k+ 1)
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Proof. From (4) we obtain
(X)) = Topra(VX)=(—1)E+1{1 —2(k+1)2x+ - - - +(— 1)k 122+ 1 k411
and therefore

| Up | < (k1) o) —(— 1 [ = (k+1)72

On the other hand
| Un |>4 (BH1)2op =5 (R +1)2

Indeed, let us assume the contrary, that the polynomial

(9)  UW)—(— D (- 1)208(x) — €4+ €X+ Cyxt - - F G0

has at least k-1 positive zeroes, since wg(x) reaches its maximal absolute
value in k42 points, where the values of v(x) have alternating signs. But
on the other hand the polynomial (9) has £-+1 terms and as regards Des-
cartes’ rule, it has no more than & positive zeroes. The obtained contadic-
tion proves our proposition, so the lemma proof is completed.

3. Auxiliary propositions. For every positive integer 7, 0<<a<1 and
x=0 we define the functions

Gan(xX)=max [0, x*—x* 1/n]
and
Ran(X)=min[2x2, x*-+ xo—1/n].

It is evident, that g., and k., are continuous and have derivatives
for every x>0 with the exception of x—1/n.

Lemma 7. For every positive integer n and 0<<a<1 there exists an
even polynomial P.,¢ H, for which the inequalities

Za,n (X)é Pa.'l (X)g h"-"(x)

hold for every x¢|0, 1].
Proof. Without any restriction, we can assume that a is a rational

number and a-1—p/q, where p and g are integers, p<g. Consider the
oscillating polynomial

S(x)=x94a, X277+ ayx'9P . .. Lqguxkaie,

In accordance with Theorem 2, if we denote by Q the oscillating poly-
nomial

Q(x) = X9+ b, X394-box59 - - - - + bypx(2k+1g

then Q [>/S . On the other hand, according to Theorem 1 and (5)
we have

Q) =5 o ()

i.e. Q| =1/(2k+1) and hence
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(10) 'S <1)(2k-+1).

Denote by &, the very left local extremum of S(x)in the interval (0, 1],
then from Lemma 3 we obtain

(11) 0 xPVi(x?)= —a,x%tP— ... —qupx2ka+tr — x4

for every x¢|0, &
From (10) and (11) we get

x? x? P —V,(x*) = §

or

(12) xe—Vy(x) =x' S for x¢(0, 1]
and

(13) 0= Vy(x)=x* for x¢[0, x,], x, 4.

Since
x{— Vi(x))=x¢"1| S

or

Vilx) - xi—xi 1 S [=(x— S ) x>0
it follows that
(14) x> S .

Let n be an arbitrary positive integer. Denote P, ,(x)= Vi(x), k=[n'2]
From (12), (13) and (14) it follows that

P,..(x)==0 for x¢[0,]| S!]
and
Poa(x)—=x—x—1 8§ 0 for x¢j| S/, 1]

or according to (10) P, ,(x) - max|[0, x*—x—! S | g,,(x) for x¢|0,1].
On the other hand, again from (12), (13) and (14), we get

P, n(x) -2x* for x¢[0, S |
and

P (x) xedx1 8§ 2x* for x¢[ S, 1),
or, according to (10)
P, ,(x)=min[2x, x*-} x V| S |- A, . (x).

Thus the lemma 1s proved.
Lemma 8. For every positive integer n and 0<a<"1 there exists an
odd polynomial P, ¢ H, for which the inequalities

o) PL(x) hun(X)
are satisfied for every x¢|0, 1].
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The proof is similar to that of the previous lemma, but here the follow-
ing oscillating polynomial should be considered

S(X) X9L-a,xP 9+ X3P 4 - - L@, x2k-1gip,

All other reasonings remain unchanged.
Lemma 9. For every positive integer n and 0<<a<1 there exists the

polynomial U, ,¢ H, for which
Zun(X) = Vin(X)= hon(X)

for every x¢|0, 1].
The proof is similar to that of Lemma 7. In this case the oscillating
polynomial

S(x)=x9+axPH9+axxP 9+ -+ xkDpia

is considered. According to Theorem 2, if we denote by Q the oscillating
polynomial

QX)=x4+a;x¥+ - - - ba,_,x™

then § < Q . On the other hand, according to Lemma 6, Q < n 2 and
consequently

S '<n2

The further considerations are similar to those of Lemma 7.
Lemma 10. For every positive integer n and 0<a<_1 there is no
even polynomial P¢ H, for which the inequality

(15) xa— P(x) | = 2= 1= Vaxa—ip—1

is satisfied for every x¢ (0, 1].

Proof. Let us assume the contrary, that such a polynomial exists. With-
out any restrictions, we can suppose again that « is a rational number
and a - 1—p/q, where p and g are integers, p<<q. Then replacing x by x¢
and taking into account that P is an even polynomial, from (15) we obtain

[n/2]
v
16 M= max x9— ¥ cpx2ka:p —9Q—1—Vapy—1,
d—
0-—x-—1 E—0 |

Denote by S(x) the oscillating polynomial
S(X) = @pXP+XI+a X7 P+ - .. 4@, x?mar, m=—(n/2),
then according to Theorems 1 and 2, Lemma 4 and (5), we get
M - S >(|,%.2p(q-p))—1(2m+l)—1 Tom 1
or
M>(1-+2V=1)"Y g4 1)1 (24 2y 11 - 2—1—lap—1,

The last inequality contradicts (16), which proves the lemma.
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Lemma 11. For every positive integer n and 0<<a<1 there is no
odd polynomial P¢ H, for which the inequality

x"»P(x) 91— 1/a(l—w) ya—1p—1
is satisfied for every x ¢ (0, 1].

Proof. Assume the contrary, that such an odd polynomial does exist.
Denote a- 1—p/q, where p and ¢, p<<gq, are integers, i. e.

[n/2]

(17) M- max x7— 3 cpxiDatp —9-1-Vall-apy 1,
0= x- 1/ 0

If we denote by S(x) the oscillating polynomial

S(x) = agx? + x4+ a,x9t7 L ayx3tr . L xCmiDate men)/2),
then according to Theorems 1 and 2 and twice using Lemma 4, we get
M S > ; (] j+2pf(qu))—l(14‘~2w+p)m)—l T om
or
M ; (1 ,%,2771+1/.1)r M1 21 —a)—1p- 1
which leads to

M>2—1 Hat—ap—1,

The last inequality contradicts (17). Thus the lemma is proved.
Lemma 12. For every positive integer n and 0<<a<_1 there does not
exist any polynomial P¢ H, for which the inequality

‘X"—P(x Q-3 a(l —a) yoa—1—2

holds for ewvery x¢(0,1).

Proof. Just in the same way as in the two previous lemmas, we as-
sume the contrary, that there exists such a polynomial. Denote again
a 1—p/q, where p<q are positive integers, i. e.

n
v o .
(18) Myomax, xq,_lckxkqw — 93— 1/a(V—a)y 2,
x £—0

If we denote by S(x) the oscillating polynomial
S(X)=agx?+ x94-a, X797 | @ax?@ P4 . L@, x"tP
then according to Theorems 1 and 2 and Lemma 4

(19) M| S > (142000 P) (14 2@ )1 Uy,

where U | is the oscillating polynomial

Up ((x)=x94aqx% + - - . +a,x™,
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Then from Lemma 6 and (19), we obtain
1
M>,8 (1 4+ 2-1+1 “=1(1 211 —a)) =15 —2

or
M>>2—-3—Va(l—a)py—2,

which contradicts (18). So the lemma is completely proved.
Lemma 13. /f for a given positive integer n and 0<<a<| there is
no polynomial P¢ H,, for which

x*— P(x) =2ix*1; x¢(0, 1],

then the best Hausdorff approximation E, (x*) of x* with algebraic poly-
nomials on the interval (0, 1] satisfies the inequality

En (x*)>A.
Proof. Assume the contrary, that
E, (x*)=4.
Then, P¢ H, exists, for which
P(x) (x—i)*—i for x¢[i 1],

P(x)= —i for x¢]0, 2]
and
P(x)=(x+4)*+1 for x¢[0,1—1),
P(x)=1-+4 for x¢[1—4, 1)
Consequently, on the one hand
X P(x) = xt— (x—A) FA=al(x -0 "+ A< 2ix*"1 for  x€[4, 1)
and

Xt P(x) Xt A= Axe T4 A< 2ix Y for x €0, 4.
On the other hand
Xt —P(x) xt—(x+A)—4  —allx +0i)y ' —i>2ix 1 for x€[0,1—2]
and
x*—P(x)=x*—1—-1=(1 —2A)x*—1—1 - —Ax—'—1> —2ix*!

for xe¢[1—4 1]

So we obtain, that

x¢—P(x) <2ix==1' for x¢(0, 1],

which is a contradiction to the assumption of the lemma and thus proves it.
4. Estimates for the best Hausdorfi approximation. It can be checked
directly that
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max min max| x—&, x*—g,.(£) |
o=x=10=2=1

= max min max|[ x—&, &g, .(x) |=nl
0~ x- 10 &1

Further we calculate

/.= max min max| x—:, x*—h,,(%) |
0 x-.10- 51

max min max| x—§&, & —/h,.(x) |
0 x=10- 31

It follows from the monotony, that i, is defined by the equation
i O=Hhon(l/n)—(1'n+0)* or dn*+(1+nd)*—2.

Therefore we have (1-+nd)*<<2 or A, —=o0<<(2V*—1)n—1<<2Vep—1,

If we take into account, that g,,.(0)==#4,,(0) and use lemmas 1, 2, 7,
8, 10, 11 and 13, we obtain:

Theorem 3. For the best approximations with algebraic polyno-
mials relative to the H-distance on the interval [—1, 1] of the functions
7.x)= x * and y.(x)= x “sgnx, the inequalities

22 Nap V< E, (g )<2Vn—1
and
22 Vali=ap =1 L E, (ipa) < 2Van—1

hold.

Similarly, using in addition lemmas 9 and 12, we get

Theorem 4. For the best approximations with algebraic polyno-
mials relative to Hausdorff distance on the interval (0, 1] of the function
x* the following inequalities hold

Q=4 Va(l—a)y—2F, (x%)< 2Vap—2,

From Theorem 4 we obtain directly

Theorem 5. For the best approximation with algebraic polynomials
relative to Hausdorff distance on the interval [—1,1] of the function
H.(x)=(1—x2), 0<a<l, the inequality

(20) Ep(8,)<93+ Va2,

holds.

Indeed, if we replace x by 1—x? in the polynomial U, _;, of Lemma 9,
its degree will double and it will become even. From this change follows
that the Hausdorff distance between the transformed functions will at most
double, because of the inequality

(1—x)—(1 =8 |=|(x—8&) (x+¢&) =2 x—¢&

for x, &¢[—1, 1].
In [6] the particular case in (13) is considered for a=1/2 and the con-
stant to the right is 5 instead of 32,
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The order of approximation in Theorems 3 and 4 is exact, but the

constants depending upon a to the right and to the left differ considerably.
The question is still open for narrowing this difference and studying the
asymptotics of E, A9.), Enry.) and E,(H.).
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