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ON THE INVARIANCE OF DOMAIN
GENCO S. SKORDEV

Let £ be a Banach space and let #:E — E be an acyclic, compact e-strong vector
field. Then ®(E)=E.

Let R*+! be the (n+1)-dimensional Euclidean space. In [I] Brouwer
proved that for a homeomorphism f:R"*! — R**' the set f(R"') is an
open set in R7+!. This famouvs theorem is one of the main propositions of
the dimension theory and has important applications. In [2] the following
generalization of Brouwer’s theorem about the invariance of domain was
proved by Borsuk: if f:Ri+! — R*+! is an emap (for a given £>0)
then the set f(R**!') is open in R**!. We remind that for metric spaces
X and Y and f: X — Y being a single valued continuous mapping, f is
called an e-map if the diameter of the set f~'(y) is smaller than ¢ for
every point y:f(X). One sufficient condition for f(R*+!)=R"*! is given by
Borsuk: if f is a strong e-map, then f(R"*)=R"+!. The map ¢:X; — X,
is said to be a strong e-map if there exists a positive real number » such
that g,(x,, Xy)<<e when oy ¥y, ¥2)<n (here y,—@(x;) and ¢ is the metric of
the space X;, i=1, 2). In the case when X, and X, are compact spaces,
every e-map is a strong e-map (but not in general case). The theorem of
Borsuk about the invariance of domain was obtained for the first time in
[2] from an application of the Antipoden Satz (3].

The results of the theory of the invariance of domain are of some in-
terest in connection with the problem of the existence of solutions of va-
rious classes of equations. To illustrate this, let us consider the equation
y=f(x), where f is a map of X in Y. Let us suppose also that f(X) is an
open set in Y and that for yo¢Y this equation has a solution. In this case
the above equation is solvable for every y, which is sufficiently close to y,.

In [4] there is given a new treatment of the theory of Fredholm’s in-
tegral equations, in which the more general case of equations y=x—Ax
(A being a linear compact operator of the Banach space E) is consi-
dered. The general case of a nonlinear A is more complicated and just in
this case the results of the theory of invariance of domain are used.

In [6] is given the following generalization of the above mentioned
theorem of Brouwer of the invariance of domain. The image of a Banach
space under the mapping f~/—A:E — E is an open set in £ under the
condition that A is compact and one-to-one (here, as usually, / is the iden-
tity mapping of the space E). In the case when A is compact and e-map
this theorem is proved in [5]. In connection with this last generalization the
notion of degree of a map, first introduced in [7], is used as well as a ge-
neralization of Borsuk’s Antipodensatz [8].
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It is a queslion of irterest: are the theorems about invariance of do-
main valid in the case of multivalued maps? In [9] the case of a multiva-
lued acyclic e-map F:R'*' — R'+! is considered. For such a map the set
F(R*+') is an open set in R**'.

The purpose of this paper is to prove this theorem in the case of in-
finite dimensional linear spaces.

1. Preliminaries. Here we shall recall some definitions and notations.

Definition 1. A multivalued map ®:X — Y is called acyclic if it
is upper semicontinuous and for every x-X the se! ®(x) is a connected
compact one and HY(®d(x))=0 for i=1.

In this paper we shall use Grothendieck-Godement cohomology with
Z, coefficients [10].

Definition 2. A multivalued map ©:X — Y is said to be compact
if the set ®(X) has a compact closure in the space Y.

The closure of the set A in the space Y we shall denote by clA. By
Fr A we shall denote the frontier of the set A in the space Y and by
Int A — the interior of the set A in Y.

In the case when X is a metric space with metric o, and Bc X we
shall denote by O.,B the set {ycX\o(B,y)<e} (here oB,y)=info(x,y),
x:B).

Definition 3. Suppose that X and Y are metric spaces and
@&:X — Y is a multivalued map. The map @ is called a strong s-map if
there exists a positive number n such that o(x,, x.)<e as soon as
O,D(x\)ND(x,)+ D (here o is the metric in the space X).

We shall consider the Banach space E with a metric given by its norm.

Definition 4. Given an acyclic compact map F:E — E, the map
@~ [—F:E — E of the space E is said to be a compact acyclic vector
field (for x:E, &(x)=x—F(x)).

Definition 5. A compact acyclic wvector field ®=I1—F is called
a strong e-field if F is a strong e-map.

Suppose #: X — Y is a multivalued map. By [I'(X, 6) we shall denote
the graph of the map, i. e., I'(X, ) —{(x, ¥)eXXY | yeh(x)}. There is a pro-
jection p(8): X, 0) — X given by p(B)(x, y)=x for (x, y)eI(X, 0).

We shall use the notion of a degree of compact acyclic vector field
given in [11].

Suppose that V is an open convex and bounded set in the Banach
space E, containing the origin of E. Given a compact acyclic vector field
Y- ]—F:V — E for which ¥(Fr V) does not contain the origin of E, the
degree d[¥, Fr V] of the map ¥ on the boundary FrV of the set V is
defined as follows.

The set ¥ FrV) is a closed subset of the space E which does not
contain the origin of the space E. Let W be an open convex neighbour-
hood of the origin of £ such that Wn P(Fr V)-— (. Consider the compact
set F(Fr V). There exists a single valued map P:F(Fr V) — § of F(FrV) in
the finite dimensional linear subspace S of the space E such that Py —ycW
for ycF(FrV). Let V'-=8SnV, then FrV'=FrVnS is the (dimS—1)-di-
mensional sphere.

Let us consider @, : Fr V' — E, &, —% Fr V'’ and denote by I'(Fr V', &)
its graph. It follows from the Vietoris-Begle theorem that the homomor-
phism p(®,)*: H*(Fr V') — H*(I'(Fr V', @,)) induced by p(®,) is an isomor-
phism [10].
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The map c:I'(Fr V', &,) — S\ {0} given by ¢(x,y)=x—Py induces a
homomorphism c*: H*(S\{0}) — H*(I'(Fr V’, @,)). The degree of homomor-
phism (p(®,)*)"'c* is called a degree of the map ¥ on Fr V (in our nota-
tions d|%, Fr V).

2. Main theorem. Let E be Barach space and let ®:E — E be an
acyclic compact e-strong vector field. Then ®(E)=E.

In order to prove this theorem we shall need some lemmas.

Let V be open, convex, bounded set in the space £ and ®@:clV — E
be an acyclic compact vector field. Suppose that the point y(E does not
belong to the set @(Fr V). We shall assume also that the set V' contains
the origin O of the space E. As usual, we shall consider the map Y= ®—y,
given by ¥(x)—®(x)—y, where x¢Fr V. It is clear that ¥ is an acyclic
compact vector field and ¥W(Fr V) does not contain the origin O of E. The
degree d[¥, Fr V] of the map ¥ on FrV s called a degree of @ al the
point y,. We shall denote it by d[®, y, Fr V].

We shall count up some properties of d[®, y,, Fr V].

1. The map ®[Fr V:FrV — E is sufficient to define d|®, y, Fr V]

2. d|®, y,, Fr V] is homotopic invariant, i.e., if 8:FrVX/— E is an
acyclic compact vector field and y,f0(x,t) for every x¢FrV and 0=t=1,
then

d[b(x, t), yo, Fr V]=dlb(x, 1), y,, Fr V]

3. If y Dl V), then d[D, y, Fr V]=0.

We shall use the notations given in Section 1, where we reminded the
definition of a degree of compact vector field.

We shall suppose that a) the identity inclusion i:FrV’ — V' induces
the inclusion j:/I'(FrV’, ¥)— I(V’,¥), b)for a subset Ac Y’ the map
c(A): I'(A, P) — SNJ0)} is given by c(A)x, yv)=x— Py for (x, y)I(A, ?).

It follows from the commutative diagram

v 22 e ) s\
i 17 I
v PV pmviwy V) @

that d[¥, Fr V]|-0, but d[®, y, Fr V]=d[¥, Fr V] hence d[®,y, Fr V]=0
Corollary 1. If d[®,y, Fr V|40, then there exists xgclV suach
that yd(x,).
4. If a:E is sufficiently small vector, then

d[(p‘{"a’ Yos Fr V]Zd[¢,yo- |5 V]

We have Of¥(Fr V), therefore there exists an open convex neighbour-
hood W of the origin, such that Wn ¥(Fr V)-—=(. Let S be a finite di-
mensional linear subspace of E such that S+WoOHAFrV) and let P:
F(Fr V) — S be a single valued map for which Py— y¢W/2 for every point
VEF(Fr V). Suppose that acW/2 and ¥,— ¥—a. There is a map k: I'(Fr V",
v,) — I'(Fr V', ) given by k(x, y)=—(x, y—a) for (x, y)I'(Fr V', ¥). If
c:I'(Fr V', ¥,) - S\{0} is the map c(x, y)=x—py, the following diagram
is commutative:
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, c(Fr V'
v Y pEvw SR SN0}
| & I
’ 4
Fr V' ng)f IY(FI' V', qll) *"'C*’_’ S\{O}‘

It follows from this diagram that d[®-+a, y,, Fr V]=d[®, y,, Fr V].

5. If yotFr(d(cl V), then d[®,y, FrV]=0.

In order to prove this, let us consider an open, convex neighbourhood
W of the origin O such that 2Wn ¥(FrU)= (. The origin O belongs to
the frontier of the set %¥(cl V), hence there is a point a¢W such that ag
¥(cl V). From 4 we have d[®—a, y,. Fr V]=d[®, y,, FrV] It follows from
the choice of the point a that yf(®—a)(clV), hence from 3 we obtain
d®—a,y, FrV)=0.

Corollary 2. If d|®, y,, Fr V]==0 then y,‘Int &(cl V).

3. Proof of the theorem. We shall prove that if y,¢®(E). then O,y,C
@ (E). Without loss of generality we may suppose that Vot D(0).

By S. we shall denote the boundary of the set O,={z:E| z| =&}
First of all we shall prove that d[®, y,, S.]+0.

We shall use the notations given in the definition of the degree of a
compact acyclic vector field (see section 1), putting V={xtE| x —e¢}. Let
us denote the dimension of the linear space S by n+1. Then V'is (n+4-1)-
dimensional e-ball D"+! with center in the origin O of E and 9V’ is a n-
dimensional sphere S".

Let us consider
a) the set X={(x, NeD+1xDn+! ||| x—y||-—¢}. This set is homeomorphic
to the set S7 D+l
b) the compact spaces

Y ={(x, y, u, VXX EXE| v¢W(x), veP(y)}
Z—{(x, y, w): X< E uc¥(x)}, here ¥-—d—y,;

c) the map g:Y — Z given by g(x, y, u, v)=(x, y, u) for (x, ¥, u, V)Y
d) the map j: I'(Fr V', W) — Y given by j(x, u)=(x, O, u, O) for (x, u)t
I'(Fr V', 7);
e) the map f:Y — S\ {0} given by
fix, y, u, v)=x—Pu—y+Pv

for (x, v, u, v)¢Y;
fy h: Z — Fr V' given by h(x, y,u)=x for (x, y u)eZ.

It is straightiorward to check that the following diagram is commu-
tative.

nS") o(S")
S - 1S", ) -5 )




ON THE INVARIANCE OF DOMAIN 11

The space Z is the graph of the acyclic map a:X — E given by
a(x, y)= ¥(x). As above, H*(X) is isomorphic to F*(Z) and, therefore, Z
has the cohomology as a n-dimensional sphere. Also, ¥ is a compact space,
which has the same cohomology as the n-dimensional sphere, because the
map g induces an isomorphism g*: H*(Z) > H*(Y).

We have an involution 7 :Y — Y which acts on Y without fixed po-
ints. The involution 7 is given by 7(x, y, u, v)=(y, X, v,u) for (x, y, u, v)cY.

In S\ {0} we shall consider the antipodal map. In this case the map
f:Y—-8S\J0} is an equivariant map, i. e. f7—= —f. By the well-known
theorem (see for example [12]) it follows that deg/=— 1 (mod2). From the
diagram (x) we obtain that d[¥%, S.]-=-0. Therefore, d[®, y,, S.]50. It follows
from Corollary 2 that y,Int @(cl O,). Therefore @(E) is an open set in the
space E.

Let O,y,={2¢E| | y,—z | <n»n'. Suppose that @&(S,)nO,y,~+. Then
there exist points x, y¢E such that a) x¢S,, i. e. |x—x,/|=¢; b) yed(x);
c) |l y—y,|<n. As @ is a strong e-field, it follows from b) and c) that
|| x—x,| <<e, which contradicts to a). Hence @(S,)n O,y,= .

Let us consider the homotopy 6(x,#):S,.x/7— E, given by #(x, f)=
D(x)--[ty+(1—1t)y,), where x¢S,, y€0,y, 0-=f=1. The homotopy 6 is an
acyclic compact vector field and OF6(S, X /), then d[6(x, 0), S.]=dl[6(x, 1), S.].
Therefore, d[®, y, S.] +0 for every y:0,y,. From corollary 2, O,y,CInt &(O,).
This gives us @(E)—E. The theorem is proved.
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