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REMARKS ON THE WIENER-PALEY-SCHWARTZ THEOREM*
TODOR G. GENCEV

A fairly simple proof of the Wiener-Paley-Schwartz theorem (L. Schwartz, 1951)
is outlined. A necessary and sufficient condition for an entire function in C” to
have the form

f(z)= [e_i‘z' D u(at)
Ky

o

s derived 'n the framework of the theory of distributions.

Being a central result in the theory of entire functions of exponential
type, the theorem of Wiener-Paley-Schwartz [5] implies easily some
important and complicated theorems obtained a long time before its discovery.
That is why it is desirable to have a simple proof of this theorem. It turns
out that not only this proof but simple proofs of almost all known resuls
of Wiener-Paley’s type [I1, p. 103—107] can be given by means of the
simple lemmas stated below. For convenience, we begin with some de-
finitions.

Let C*=R:+iR] be the space of the complex variables (z,, 2,,..., 2,)
zi=Xx;+iy;, j=1,2,...,n; we set z=(2y, 2g,. .., 2n)=X+1y, where x=Rez

=(X1, Xaye ooy Xp), Y=IMZ=(Y1, Vay- - s Yn)s Jz}2=2x§+2y';’.
Jj=1 Jj=1

=/ Rez >4 |Imz 2

The linear space of the entire functions in C" of exponential type-—g, i.e. the
entire functions such that |f(z) =<A.elet2) 121 z¢C", ¢>0, will be denoted
by E” and its subspace, consisting of the functions bounded on R}, by B
Further, if © is a domain in. the Euclidean space R" with generic point
t=(ty, toy..., 1), by C=(2) we denote the set of the functions defined in Q,
whose partial derivatives of any order exist and are continuous in Q. The
set of the functions in C=(2) with compact support in £ will be denoted
by Cy(«2) and the set of the distributions with compact support in R”—
by &(R"). . .

Now we are in a position to state the Wiener-Paley-Schwartz
theorem (WPS theorem), which is known in two forms:

1. (Strong form). A function f(z) in E" satisfies the condition f(x)
=O(| x ™), when | x| —>coonR", if and only if it is the Fourier transform
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70 T. G. GENCEV

of a distribution in &'(R") with support in the sphere t*— 2t
j=1

2. (Weak form). A fanction f(z) in E, satisfies the estimate
f(2)] =M+ z )ymes!'mzI, M= const,
if and only if it is the Fourier transform of some u¢&'(R") with suppu
c{l|t =0}

While a short and natural proof of the theorem in its weak form is
well known [3], the proof of the strong version is rather complicated. By
means of the following lemmas one can easily prove that the condition
f(x)=0(| x|™), as | x| - o on R, implies the inequality f(z) |- M(1+| z[)*"
el mz| and therefore to reduce the strong form of the theorem to the
weak one.

Lemma 1. Let f(z)¢ E! and let on R the inequality

(M fx) =M+ x )y, M>0,
m=0 — constants, be satisfied. Then the inequality

2) f(2) =M1+ z))ymee ! 'm2z 1, M, <2m2M
holds.

In the case m=0 this lemma is well-known [1]. In the general case the
proof follows the same lines.

Lemma 2 can be obtained by using lemma 1 in a suitable way.

Lemma 2. Let f(2)¢ E* and let on R? the inequality

(3) e =M+ xlym (x2= X,
j=1

hold. Then we have in C"
) | f(2) | M(1 +| 2 |)2ee 1 1m

Of course lemma 2 is not so precise as lemma 1, but for our purpose
it is quite sufficient.

In order to illustrate the significance of the WPS theorem, we shall de-
duce from it the following classic result of Plancherel and Polya [4].

Theorem 1. Let Z be the lattice of the wvectors v=(v,, vy...,
va) € Ry, v; being integers*, and let 1II, be the n-dimensional cube defined
by the inequalities vy=x;-v;+1, j=1,2,...,n. If f(2)¢ E,, o<<x then the
inequalities

N " _of e .

= o)) =C vd , P,
a) (-ezl ) ) ,(an f(x) x) P

\p 5 1'p

b rd <C, L po-1,
) (Rj’: f(x)| x) .('%z‘f(y) ]p) P
<) (2 max f(xw)' <G, (.L’l f(v):")”"- pol,

v€Z ", v€ Z

are equivalent. The constants Cp, k=1,2,3 depend only on o.
“ In what follows Z always will have the same meaning.
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The proof of this theorem which we want to outline is based on three
lemmas, the last two of them being simple consequences of the WPS theo-
rem but, nevertheless, are of some interest in themselves and are useful in
many problems.

Lemma 3. Let h(t)¢Cy (R") and let

n

(5) h(z)= [ e~ Dh(t)dt, where (z,t)—= 3 zt;

Rn J=1
is its Fourier transform. Then on R! we have
(6) Zlit(x—v)lgM, M =const.

vy€Z

Proof. Since the sum of the series (6) is a periodic function of x it
is sufficient to consider only the case when O0=x;,=<1, j=1,2,..., n. Inte-
grating (5) by parts several times we get the inequality
| R(x)| =A/(1+ | x|+, x¢RE, A=const

and the lemma follows.
Lemma 4. Let f(z)¢ E" and let on R} we have f(x)=0(| x|™), as

| x| -—co. Then the equality
1 -
f2) =gty [ Az—Drat,
2"

where h(t)c CY(R") and h(t)=1 in some neighbourhood of the sphere
t|—o, holds.

A Lemma 5. Let f(z) be the function from lemma 4 and let c<n. If
h(t)€ C3(Q2), 2 being tie cube |t;|<=, j=1,2,...,n, is such that h(t)=1

in a neighbourhood of the sphere |t =o, then the equality
1 . ~
fi@)= im—% () h(z—7)

is wverified. X )
By means of these lemmas a fairly simple proof of theorem 1 can be
given by reasonings similar, to some extent, to those of Wiener [6, ch. 2,

lemma 6]. ? ¢ :
Theorem 1 has some corollaries. One of them is the following

Theorem 2. A function f(z) belong to E"NLARY), p=1, if and only
if it is the Fourier transform of a distribution u(p) with support in the
sphere | t|=o, and such that the estimate

B (i lg 1 1
u(@) C(_:,;hv(v) g B e

holds for every olt) ¢ C5'(D), where D is the sphere |t | <.
Particularly, f(z) ¢'B", if and only if the inequality
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k
(7) u) €Yo, e CrD),
v€eZ
is satisfied. i
Let us note that ¢(») is nothing but the »th Fourier coefficient of ¢(f)
multiplied by (2x)”.
Now we shall give a direct proof of this theorem in the case p=oc .
Proof. Suppose firstly that f(2)¢B,, o<<a and ¢(f)¢ Cy(D). By the
WPS theorem f(z) is the Fourier transform of a distribution u¢ &'(R"),
suppuc{|t o} and, as is well-known [3] f(z)=u,(e—=9).
Now let #(f)¢ Co’ (D) be such that A(f)=1 in a neighbourhood of
supp @ J supp u. Developing ¢(f) in Fourier series we obtain

(8) o(t) = (271 Y p(r)eit 0,

»y€Z

which is uniformly convergent in R" together with any of the series obtain-
ed from (8) by partial differentiation. Hence, each of the sequences
{D“Sy(t)), where Sp(t)=h(t)(22)" Y o(»)ei 9, a=(ay, as,...,a,) D*=DpDs

. Dpn is uniformly convergent in R". Since, on the orher hand, supp S,,c D,
we have lim u(S,)=u(hp)=u(p) and in virtue of the inequality

m-—oo

W(Sm) | =(27) " | X o) f( ~v)sszgplf(x) Do)

|y |=m v€Z
the necessity of the condition (7) is prdved.
Now suppose u¢&(R"), suppuc{|t|=a} is such that (7) is satisfied.

We have to prove that the function f(z)=u/ e+ 9) is bounded on R}

since it obviously belongs to E7. If A(f)¢ C5°(D) is such that A(f)=1 in a
neighbourhood of suppu, we have f(2) u/(pAt)), where ¢.(t) - h(t)e—= " and
consequently

f(X)] = udge)) =CY 1 9u(0)|=C X h(x+») , x(R"
vEZ r€Z

and the desired conclusion follows immediately from lemma 3.
The theorem just proved gives rise to the following question: from
the proof of the WPS theorem [3] we know that if w¢&'(R"), suppu
n

c{|t| o}, is subject to the condition u(yp) C‘L' max | D!, la =_,§'a,,
lalm K J=1
where K is some compact neighbourhood of suppu, then we have
/(Z) u,(t’ i(z, h) .:C(] '}“zl)m‘m Im:,_
Thus in the case m =0 the function f(2) is bounded on R{. In other words
the condition |u(p) ~ Cmax| ¢ is sufficient but, according to theorem 2,
x

not necessary for the boundedness of f(z) on Rf. It is natural to look for
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a characteristic of the functions in B, which are Fourier transforms of
distributions such that the estimit

) u(p) =Cmax @(x), S,={/t =0}
S
holds. Tne answer to this question is given by the following

Teorem 3. A function f(2) in B} is the Fourier transform of a dist-
ribution u¢ & (R') with support in the sphere S, for which (9) holds, if
and only if it has the form

(10) f(z)ife"'(’- N u(dt),

where u(dt) is a regular countably additive measure in the sphere S,.
Proof. Suppose f(z)=u(e"¢"), where u¢ &(R"), suppuc{ t/=o} and
(9) holds. Since according to the Riesz representation theorem [2, p. 265]

we have H((p)*—‘fq‘(t)‘u(dt), S,={ t| =o}, the necessity of the condition (10)
N

is proved. The “sufficiency of (10; follows immediately from the trivial
estimate

[ H(tyu(dt) = max| o(t) Var u(dt) .
. s, s,

S,

a

Corollary 1. There exist functions in B? which cannot be repre-

sented in the form (10). For example such a function is the Fourier trans-
form of the distribution

- /‘h(t)__qu,,t._, ..... t,,)—t:p(—tl.tz ..... ) dt,
R
where h(t)¢ Ci(S,) is equal to I in some neighbourhood of t=0.
Indeed, setting z=(zy, 2'), £ (£, ') we have

—iz\dy __eiz.f.

o)~ et 0)— (e e o
S

which is obviously bounded on RY, but, as is easily seen, the estimate (9)
is not verified. : :
Corollary 2. It follows from the classic Wiener-Paley theorem,

that the functions in B of the form (10) are dense in B,. Now we may

o

assert that the functions in B, which cannot be represented in the form
(10) are also dense in B.. Indeed, if f(2)¢ B) has the form (10) then f,(2)

f(2) +-¢f,(2) cannot be represented in such a way and univormly tends to
f(z) on the bounded sets in C*, when & 0.
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