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ASYMPTOTIC NUMBERS — ALGEBRAIC OPERATIONS
WITH THEM

CHRISTO YA. CHRISTOV, TODOR D. TODOROV

The mamn subject of the present paper is to define the four algebraic operations —
addition, subtraction, multiplication and division in the set of the asymptotic numbers A4 [7]
and to deduce the corresponding formulas for the components of the asymptotic number,
representing the result as functions of the components of the arguments. The definitions
of the operations, in fact, are introduced as a special case of the more general notion of a
quas:classical function — one special class of functions defined on A. The discussion ot the
algebraic and some other properties of the asymptotic numbers is put off for a next paper.

The set of asymptotic numbers, introduced by the same authors in [7], is a generaliza-
tion of the system of real (complex) numbers, comprising infinitely small and infinitely
large numbers [1], [2]. The reasons for introducing these numbers are connected with conc-
rete problems of the quantum mechanics [5], [6], [8], but it seems to us that they are also

interesting for themselves.
The definition of the asymptotic numbers and some of their properties are reminded

in the introductory chapter, by which we achieve logical independence of [7].

1. Asymptotic Numbers. Several attempts are known to generalize the
notions of the number [1], [2] and the function [3], [4]. In two previous pa-
pers we proposed a new generalization introducing the notions of the
asymptotic number [7] and the asymptotic function [8] in order to be useful
for some problems in quantum mechanics, especially in cases where wave
functions appear which do not belong to the Hilbert space [5], [6). One
makes use often of the generalized functions of Soboljev-Schwartz but they
are not always the appropriate tool because one cannot multiply them. One
is dealing also with the so-called wave packets but it is only a not elabo-
rated idea. Our aim is just to propose a general and complete scheme for
work with packets. For that purpose we propose one modification in the
definition of the generalized functions f(x). As it is known they can be in-
troduced as equivalent classes in a given set S; of sequences of functions
fs(xX)(— co <x<co, 0<s<s,), the classes being determined by one and the

same limit
(1.1) f.o=limfs.q,
§-0

(1.2) fo-w= [ 1))

for every @(x) from another set S*. The algebraic operations f(x)=F(f,(x)
with generalized functions are defined by means of the same operation
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with the representatives fy,(x) of f,(x), provided the sequence of functions
fo(x)=F( fs(x)) belongs to S, and different choices of the representatives
fen(x) by given f,(x) lead to sequences which are representatives of one
and the same generalized function f(x). According to this, it turns out that
for example the sum f(x)=f(x)+f,(x) is defined but the product f(x)
-f1(x). fo(x) — not always. In order to achieve possibility for multiplication,
we replace by another appropriate (narrower) set S; and ¢(x) from S*—
by sequence of functions ¢¢(x) from another appropriate set S*. It turns out
that fs;.qs is of the form
o,(s) )

(1.3) Zya,,s"-i—o,(s), (Au;,\jngv; lim —— =0
n 5§50 N

We suppose then that two sequences of functions from S; are equivalent
and represent the same asymptotic function f(x) if for every @4 x) from
S, they lead to expressions (1.3) with the same a, and ». Then we get
that (i) the product is defined, (ii) the Dirac function and its derivatives
are included, (iii) the equivalent classes are quite large (although narrower
than those by Soboljev-Schwartz), (iv) the representatives of a given asymp-
totic function have all necessary properties to be considered as one wave
packet.
As a simple example let us choose

14y 21+vs) ,

Fa0) - TIEY exp (—(x—@)/s), ful) g exp (- (x—a)!/sY)-
Then, according to (1.2), we find fs.¢=@(@)+0y(5), fs:.@=q@(@)+0,(s) so
that f;,(x) and fs,(x) can be considered as representatives of the Dirac func-
tion. But we can put them in square f2,(x)-—(1/7s%) exp(—2(x—a)*/s?),f2(x)

4/1'%(1/4)s? exp (—2(x—a)*/s*) and we get

3/4

l .
fi- o= J2ns p(@)+0-y(8); [ 0= —IT_,('?”T)S— g(a)+0_4(s).

One sees (i) that the functionals are of the form (1.3) and (ii) so that in
order to reach multiplication we need a finer classification than the one by
Soboljev and Schwartz.

It is convenient for expressions of the form (1.3) fixed a, and » t{o be
considered as numbers — we name them asymptotic numbers — then by given
f(x) we could consider (1.2) as functionals like by the functions of Soboljev-
Schwartz. The asymptotic numbers comprise ordinary as well as infinitely
small and infinitely large numbers of polynomial type and given accuracy »
[1], [2]. For us they are an auxiliary tool but it seems that they exhibit
interesting properties as algebraic objects and for that reason we shall in-
vestigate them more widely than is necessary for the applications.

First we shall remind the definition. Here it is slightly simplified, re-
maining equivalent to the primary one.

Definition. 1. Let s be a real parameter, varying in the interval
0<s<s,, where s, is a fixed positive number and A(s)— the set of all
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real (complex) sequences™; a(s)-— functions of variable s, for each of them
one can find an integer (positive or negative) number u so that
(1.4) lim | a(s) :s"<<co.
§-0
The number « can depend on the choice of a(s). It is not uniquely
determined — if (1.4) holds for g, it will hold for any u<lu,, too.
Theorem 1. Every sequence a(s) from A(s) can be written in the
form
N
(1.5) a(s)— Y a.s"+0,(s).
n
Here » is an integer number — accuracy of the representation (1.5), NV is a
spectrum of integer numbers not greater than », a, are real (complex) coef-
ficients and o,(s) is real (complex) residual term satisiying the condition
(1.6) limo,(s):s"=0
s—0
for all integer » not larger than », »=N.
The sum

N
(1.7) p(s)- Z’a,,s"

is the main part representation (1.5) of a(s).

Without restriction we shall suppose a,=0.

For a given sequence a(s) the representation (1.5) is not unique. It can
be reduced to

Nr
a(s)= Xa)s"+0/,(s)
by any »<». Obviously, we must have a/,—a, for n¢ N', where N'=N,,.
Here and in the remaining N, N®) and N'%I are the lower and the upper
parts of N (where n- x, n>>x and n-—x respectively). In the case when o,(s)
in (1.5) is of the same form (1.5) with some other u, », N and a, the re-
presentation (1.5) of a(s) can be extended up to a larger ».

Definition 2. If a(s) is a given sequence, the largest u for which
(1.4) holds is the power of a(s). If (1.4) holds for all u, the power of
a(s) by definition is .

The power u of every given sequence a(s) is uniquely determined.

Definition 3. If a(s) is a given sequence from A(s) the largest
value v, of v for which (1.5) holds, is the accuracy of a(s). If there is no
such (finite) largest v, the accuracy v, should be <-.

For » »,=co the condition (1.6) is meaningful too. (That was the rea-
son not to write (1.6) in the simpler form lim o,(s):s” — 0.) For every in-
A 50
Y we shall call the functions a(s) from A(s) sequences becavse they play part of the se-

quences (with continual index s) in our theory.
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teger » not larger than the accuracy », the sequence a(s) can be written
in the form (1.5). If the accuracy is infinite, we can generalize (1.5) for
y=co. It is easy to obtain N and a,(n¢N) for » -»,=-~, because with
increasing » new coefficients appear, and once appeared they do not change.
We have only to separate a(s) in p(s) and o,(s) taking into account that if
y=v,=oo p(s) can be one infinite and even divergent series. We have to
determine p(s) so that, adding to it an appropriate function of the type
0..(s), to obtain the given sequence a(s). By this rule p(s) is defined up to
a function o..(s), too.

Definition 4. If for v—c< N remains finite or if it is infinite but (1.7)
has radius of convergence s,>s,, we can take (1.7) as a definition of p(s),
too. If 0<s,<s,, we put for example

N
lwa,,s" for s<s,,
(1.8) p(s)=1\"
Y for s, s<S;.
If s, 0, we can choose
N —
(1.9) p's)— Y a.sn(1—exp(—1/ a,|sns)

(9], 9.2'. The series (1.9) is convergent (and aralytic) for every choice of
a,. The determination (1.9) can be also chosen for s,>>0 and even for 5,>s,,
and for finite AV but in these cases, of course, (1.7) and (1.8) are simpler.

Definition 5. We say that a'(s) is subordinate to a(s) if the se-
querce

Aa(s) —a(s)—a'(s)

satisfies (1.6) for v—va, v, being the accuracy of a(s).

Theorem 2. The relation of subordinance is reflexive and trarsi-
tive but not symmetric. (It is symmetric only in the subsels A,(s) of se-
quences a(s) with given accuracies v.) This subordinance is partial — not
for every choice of the sequences a(s) and a'(s)— one of them is subor-

dinate to the other.

Definition 6. The set of all sequences a'(s) subordinate to a given
sequence a(s) represents an asymptotic number a.

Definition 7. The representatives a'(s), to which a(s) is subordi-
nate too, are proper representatives of a. If not— a'(s) is a supplemen-
tary one.

Theorem 3. For every choice of the accuracy v (integer number
or ) the spectrum N (of integer numbers bound from below and not
larver than v) and the (real or complex) coefficients a, (n ¢ N) corresponds
one and only one asymptotic number a, so that we can put

(1.10) a (v, Nya,) (n¢N).

Theorem 4. For given a its components v, N, a, are uniquely de-
termined.
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Theorem 5. The power u of the asymptotic number a is the power of the
leading term in its main part, i.e. the first element in the specirum N. By
empty N we put wu-—».

Hence every asymptotic number a, every sequence a(s) representing a
and every representation (1.5) of a(s) have their uniquely determined accu-
racies », spectra N and coefficients a, There are connections between these
quantities associated with the number a, the sequences a(s) representing it
and their representations (1.5), but in general they do not coincide.

Definition 8. Using the main part! and the accuracy of a given
asymptotic number a besides (1.10) we can irdicate:

N
(1.11) a—(p(s)), (Z’aﬂy) i

n
N

Teorem 6. A given sequence a(s)= 2 a,,s"+o,a(s) is proper repre-
sentative of one and only one asymptotic number a=(v, N, a,) with v=v,
but it is supplementary representative of an infirity of asymptotic num-
bers a, each of them characterized by its accuracy v<v,. The spectra N,
and coefficients a,, of them are given by N,— N, and a,,—a, for n¢N,.

Theorem 7. If a(s) is a representative of two numbers a--a’, the
accuracies of a and a’' must be different and all representatives of the
number with the higher accuracy are representatives of the number with

the lower ore ioo. )
This theorem is a consequence of the previous one.
Definition 9. The relative accuracy and the relative spectrum are

(1.12) A=v—u, M=N—pu.

Here N—u is the spectrum which one obtains subtracting u from each
element of V. For numbers with nonempty spectrum the leading coefficient
and the relative coefficients are
(1.13) a=Q,, @p==0a,4m:Q, (meM).
If the spectrum is empty « is arbitrary and there are no a,,.
Then denoting
(1.14) 0,(8)=0,(5):as",
instead of (1.5), (1.10) and (1.11), we can write

M
a(s)=as" (‘zwa,,s"' - ol(s)) 5

(1.15) &
\V

a (1) oy M; a, anl)r a-—as" W ulnsm .

@)

m
Definition 10. The asymptotic numbers zero and one are the num-
bers whose representatives are differences, respectively ratios of the re-
presentatives of one and the same rumber a, the ratio being arbitrarily
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defined for the wvalues of s where the denominator wanishes. (In the de-
finition of 1 the number a canno! be 0.)

Theorem 8. The zero and one, thus defined, depend on a, namely
on its accuracy. We have an infinity of asymptotic zeros o, and asymp-
totic ones 1, represented by

(1.16)  0,(s) (»=0,+1,...,00), lis)=1+40ys) (A-0,1,..., ).

It is useful in some cases to remove entirely or partly the condition
all coefficients to be not zero.

Definition 11. Removing the condition a,+0, we get the free spect-
rum of the asimptotic number a. Putting only the condition the first coef-
ficient, if there is a first coefficient, i.e. if the spectrum is not empty, to
be different from zero, we obtain the nonsingular spectrum. In order to
distinguish these two spectra from the spectrum introduced in the begin-
ning, we will name it primary spectrum. By the representation (1.15), if
the relative spectrum is not emp!y, the first element of M is always I,
so that M can be only primary or nonsingular.

A given asymptotic number @ has an unique primary spectrum, but se-
veral free and nonsingular ones. One can obtain them by adding to the
primary spectrum supplementary elements n such that n=» or u<n=vw
respectively.

According to the definition of the power u in the case when we are
dealing with free spectra /N, « must be not simply the first element of NV
but the first one for which a,+0. If N—=@ or Nt @ but all a,=0, we put
wu=v, M >, ay,—a,— arbitrary.

Definition 12. The set of all asymptotic numbers, corresponding
to the set of all sequences a(s)¢ A(s), will be deroted by A.

The elements of A are characterized by », N, a,(n¢ N, a,+0) (1.10) or
Lou, M, a, an(ag "V, an+0, me MO, a0 for MO+t &) (1.15).

Definition 13. The discrete parameters in (1.10) or (1.15) represent
the structure index o of a: o (v, N)=(4, u, M).

Definition 14. The subsets A, of A one obtairs wvarying the coef-
ficients a, by conserved structure index o represented primary, elementary
or nonsingular sets corresponding to the three types of specira N-— pri-
mary, free or ronsingular. For subsets A, consisting only of zero, we put
o (r,2) (0, u, ), u=v.

2. Quasiclassical Asymptotic Functions

Definition 15. The general notion of asymptotic function

(2.1) y—=F(x) (i=1,2,...,m)

requires to every choice of the asymptotic variables x;, running over a
given subset X in the space of m-tuples of asymptotic numbers A™ and
each characterized by the parameters (v, N, a;) (1.10), to correspond by a
given rule value of the asymptotic variable y, represented by (v, N, a,)
(1.10) again. We shall restrict ourselves with a narrower class — the qua-
siclassical asymptotic functions, defined, defined as follows.

Definition 16. Lef

(2.2) n =f(5i' s) (l: L2..., m)
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be an ordinary function defined on a set of points X* in the m--1-di-
menisonal space of the parameter s and the real (complex) ordinary va-
riables &. Denoting by x; and y asymptotic wvariables, let a{s) be arbit-
rarily given values a; of x; Let

(2:3) a(s) = f(ads), s)

be the sequence (function of parameter s) one oblains replacing & in (2.2)
by ais) and determining it arbitrarily on the set S* of wvalues of s in
the interval 0<<s<s,, for which the point (a(s), s) does not belong to X+,
i. e. for which f(a.s),s) is not defined directly by (2.3). The value of the
quasiclassical asymptotic furnction

(2.4) y=f(x:)

corresponding to the classical function (2.2) for >;—a; is the asymptotic
number a with the highest accuracy to the representatives of which be-
long all sequences a(s) ore obtains from (2.3) (varying ads) by given a;
and defining each a(s) (2.3) arbitrarily over S¥).

According to theorem 7, if there is a number a* to the representatives
of which belong all a(s) (2.3), there must be an infinity of such numbers
a*, each characterized by its accuracy »* but one and only number a bet-
ween them with highest accuracy ». The existence of numbers a* is not
always assured so that it can happen f(x;) to be defined not for all x.

Definition 7. a; of x; for which there exist numbers a* and con-
sequently one number a with the indicated properties determine the set of
points X in the set Am for which the function (2.4) is defined.

Let us stress that two data are necessary to be given for the deter-
mination of the value

(2.5) a—':f(Xi)xl.:al.

of the quasiclassical asymptotic function f(x;) (4):(i) the classical func-
tion f(g; s) (2.2), defined on a given set X* in the space of & and s and
(ii) the values a; of the arguments x;, for which one wants to find the
value of f(x;) (2.4). The problem to determine the set X, where the func-
tion f(x;) (2.4) corresponding to f(& s) (2.2) is defined, is a problem which
has to be solved for each function separately.

Definition 8. If the sequences f(a«s), s), obtained from (2.3) after
arbitrary continuation on S* and corresponding to all represertatives a(s)
of the given values a; of x; cover completely the set of representatives
of a number of the type a*, we say that the point a; of X is perfe-t. Other-
wise it is imperfect.

Theorem 9. The perfect number of the type a*, if it exists, coir-
cides with the result a (2.5).

3. Algebraic Operations

Definition 9. The elementary algebraic operations — addition,
subtraction, multiplication and division

(3.1) x=x"+x", x=x'—x", x=x'.x", x=x":x"

are the quasiclassical functions, which according to Definition 16, cor-
respond to
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(3.2) n=¢+8&, n=§-8", n=¥8.§", n=§:§".
For the case of addition equation (2.3) reads
(3.3) a(s) =a'(s)4-a’(s).
According to (1.10) and (1.5)
(3.4) a (O, N, a;), a’ (v, N;’ al), a (r,N, a,),
N N
(3.5) a'(s)= _}7 as" o,/(s), a’(s) ‘L"a;s" +0,(s),
n N n
a(s) _\:a,,s" +0,(5).
7

Substituting (3.5) in (3.3) we get first

(3.6) y—min (», »")
and then

(3.7) NN, UN,
(3.8) a,—a,+a,.

Writing (3.8) we have supposed a),=0 for ne¢N' and a’=0 for ne¢N"

So we can formulate

Theorem 10. The sum x(1) is defined for all asymptotic arguments
x' and x" and according to (34) is given by (3.6)—(3.8).

We shall add a formula for the power u of the sum. If

W' or w=p", N'Wl =0 or p=u", N'UI=go
or w —u’, NI N"Wt3, af_,+al"',,:f:0 we have
w—min (u, u'").
In the opposlte case when

,u'=;4", N'll"]‘ N"[/-"l | @, a'r.'_’}_al‘:" 0

#

we say that there arises annihilation and we have to look for the rnext
nonvanishing terms with indices x, and «}. Then we find that if
,u'l } ,u;' or /l'l :u';, N'Wi=o or ,ll: -»-,u;', N"[";"=@
or | —uj, N, N 2, a,+a’,+
we have
“u :min(/(; , ).

In the opposite case we have a double annihilation, etc. Generalizing we
reach



ASYMPTOTIC NUMBERS 95

Theorem 11. /f
’ ”n
(3_9) .”j":,“;-’, Nl“‘jl, N"[‘“j =0, a;‘;_*_ a,:,":O

(j=0,1,...,i—1; ,u('):_-,u', ,u(')':ﬂ")
but
’ n
(3-10) wiEnl! or =y, N & or =gl N — & or

’ rn
’ " e ) wolee. ) 1 ’ ” ooy
wp=p"l, N NP o) al‘f+a”7 =0
i

i

we have i-tuple annixilation and in this case

(3.11) w=min (ul, w)).
Theorem 12. For the difference
(3.12) a=a'—a"

the formulas giving the components (1.10) of a as functions of the compo-
nents of a and a" are analogous- Only in (38), (39) and (3.10)
instead of a,+a), a - +a’» and a:,+a;’u will appear a,—a,, a,—a’
j '“j ‘i ’i .I ‘j'
and a'»—a''n.
“i l‘i

Now one can prove

Theorem 13. /If we have three asymptotic numbers a, b, ¢ one of
which is the sum or the difference of the two others, the accuracies of
two of them, standing on the different hand sides of the equality, must
be equal and the accuracy of the third one must be not lower. We can
transmit the number with the not lower accuracy from the one to the
other hand side of the equality without losing its wvalidity.

So this theorem gives us the conditions by which the pairs at equali-
ties a—b—c and b=a+c or c=b—a and a—=b—c are equivalent. To
prove Theorem 13 we have to realize that the connections between the
components of a, b, ¢ induced by these eqnalities are the same — first for
the accuracies, which is clear from (3.6), and then for the spectra and the
coefficients, which is obvious, because then the statement is brought back
to the same statement for polynomials.

From Theorem 13 it follows

Theorem 14. The sum and the difference are perfect for all choice of
the arguments.

Let us take the sum

(3.13) a=a'+a"”

and let us suppose »' »”. Then (3.13) according to Theorem 13 can be
written in the form

(3.14) a'"-—a—a'.
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Let us choose the residual terms of @ and &’ arbitrarily and let us deter-
mine the residual term of @” from the equality

a’(s)=a(s)—a'(s)

which is always allowed. But since (3.14) is equivalent to (3.13), it turns
out that by every choice of the residual term of the sum a in (3.13), it
can be obtained by appropriate choice of the residual term of @” (and by
arbitrary choice of the residual term of a’). In the case » -—=»"” the roles of
a’ and a”’ have to be exchanged.

The proof of Theorem 14 for the difference a- a’—a’’ is analogous —
instead of (3.14) we bhave to start from a’=a+a” for »’=» or from
a’  a —a for vy

The spectra N’ and N in all formulas concerning the addition and
subtraction can be chosen to he primary, free or nonsingular, but the spect-
rum of the result NV given by (3.7) is a free one. So if we want to deal
only with one type of spectra, we have to suppose that N’ and N’ are
free too.

The formula (2.3) for the multiplication reads:

(3.15) a(s)=a'(s).a"(s).
Then making use of the notations (3.4) and (3.5) we get first
(3.16) vy —min (« +v", w’ +5")
and then
(3.17) N - (N'+N")q),
n'+n"=n
(3.18) a,— 2 a,al, (neN),

n’ €N, n’eN"

N'+ N'" being the spectrum one obtains adding each element of N” to
each elemenf of N’. Using the notations (1.12) and (1.13) we get in an
analogous way

(3.19) A=—min (1, 2""),
(3.20) w=pu +u’,

(3.21) M (M + M),
(3.22) a—-a .d’,

(3.23) U = M a,,all,.

e
mreEM!, meEM

The advantage of these formulas is that they realize maximum separation
of the components: 2 depends on 2 and 2”, w—on &« and ', a—on o
and «" and a, —on «,, and « .

If one or both factors @’ and a” are zero, “the formulas (3.16) —(3.18)
and (3.19)--(3.23) remain but in this case one finds simply
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a .a’" =0, ..
By the division (2.3) reads
(3.24) a(s)=a'(s):a"(s).

We suppose the denominator a” not to be zero. Then making use of (1.10)
we get

(3.25) y=u' —u’ 4+ min(»’ —u', ' —u""),
(326) N=(N,“,u”+(N”(“")—Iu")*(y),
-y
(327) a,= Y (—1)ay, (neN),
=0
Lot lat oo+l =1

1 \7 ad 1! AT TR ’”,
(3.28) Un=—5.2, pJ T B e R Ll PR A

AN Y S 1 >0 1% , ,

Here and in the remainder M* is the saturation of M, i. e. the spectrum
which (i) contains M, (ii) if &k, [e¢ M* then k4-le¢M* and (iii) M* is the
minimum spectrum with these properties

(3.29) Mc=MUM+MuM+M+M)uU. ..
The summation in (3.28) is restricted by the condition
(3.30) k+kyl4-kolot- - - +Rplp=1,.+n,

where w”’<k,<k,< - --<k,— »" are the elements of N"() and p is this
number. The summation in (3.27) is finite because the condition /,+/,+---
+1,—1 can be fulfilled only by sufficiently small L.

Making use of the notations (1.9) and (1.10) we get obviously

(3.31) % —min (2, "),

(3.32) = —u,

(3.33) a=a :a’,

(3.34) A= %‘ (= 1Y st
Moy bitlete o+ =t

(3.35) At~ S .y aya b al. . .
k Oyolg « o < lp;/:o 14

Here 0<k,< ky< ---<kp,=A4" are the elements of M and the condition
(3.30) reads now

(3.36) k+kly+ - - - +RhJ,=n.

The formulas (3.25)—(3.28), (3.30) and (3.31)—(3.36) remain also if @’ is zero
0,,, but in this case we find simply o« :a” —o0,_,». If @’ is zero, the ratio
a':a" does not exist, even not for a’'=o,.
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So we see

Theorem 15. The product and the ratio of two asymptotic numbers
a' and a' are defined for all a’ and a" with the natural exception when
the denominator of the ratio is a zero o,.

By the demonstration of these formulas we have to take into account
that the representatives a’/(s) of the denominator «” can vanish for a set
S* of values of s where the values of (3.24) are chosen arbitrarily. Since
a’’ is not zero, for every a’’(s) exists one valte s, of s <o that s¢S* only
for s=s, But the arbitrariness in the definition of (3.24) for s¢S* does
not violate the behaviour in the neighbourbood of s-=0 which is only of
significance.

The formulas (3.25)—(3.28), (3.30) are valid for all three types of
spectra N’ and N” — primary, free and nonsingular, and (3.31)—(3.36) — for
primary or nonsingular. The result is given with a free spectrum if it is
obtained through (3.25)-—(3.28), (3.30) and N’ and N” are iree or it is with
a nonsingular spectrum in all other cases. So if we want to deal with only
one type of spectra by the multiplication and division, we have to choose
the nonsingular ones.

Here we can prove two theorems analogous to Theorem 13 and Theo-
rem 14

Theorem 16. If we have three not simultaneously vanishing asymp-
totic numbers a. b, ¢, one of which is the product or the ratio of the two
others, the relative accuracies at two of them, standing on the different
hand sides of the equality, must be equal and the relative accuracy of the
third one must be not lower. We can transmit the number with the not
lower relative accuracy from the one to the other hand side of the equality
without losing its wvalidity.

The first part of this theorem is an immeciate consequence of (3.19)
and (3.31). For the second part we have to take into account also the next
equation (3.20)—(3.23) and (3.32) —(3.36), which simply reproduce the Cau-
chy rule for multiplication and division of asymptotic series and according
to which one can easily transmit factors from one to the other hand side.

Theorem 17. The product and the ratio are perfect for every choice
of the arguments for which they are defined, if the denominator of the
ratio is not zero.

The proof is analogous to that for the sum and the difference. Only
by the product the case when all numbers a, b, ¢ are zeros has to be con-
sidered separately. Indeed, if we set,

(3.37) 0,1, (8)=0.,(s). 00, (s)
(3.38) o,(s) so(s), o', (s) s"o(s),
we get

(3.39) 0(5) =0, i (8)s" " 0y(S).

We put in (3.38) and see that in the case of comnplex asymptotic numbers (3.37)
can be satisfied for every choice of 0,,,,.(s). In the case of real asympto-
tic numbers we can replace (3.38) by o0/(s) s o(s), 0 [(s)s"us)o(s)
where &(s) signo, ., (s). Then instead of (3.39) we get
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o) o, (S [ 7= 0yfs).

So that the reality of o(s), o/ (s) and o], (s) is ensurec.

Thus one sees that all four algebraic operations are defined for every
choice of the arguments @’ and a@” and the recult is perfect with the na-
tural restriction by the division — the denominztor must be not zero o, (see
Definition 0).

4. Remarks on the Quasiclassicai Functions and the Algebraic
Operations. ) o

Remark 1. The theory of the asymptoiic numbers is quite similar
but more general than the theory of asymptotic series [9]. Indeed, we are
dealing not only with positive but also with negative powers oi s. This
generalization is essential for our purposes — to define the asymptotic func-
tions, comprising functions analogous to the Dirac’s o-function and its de-
rivatives [8], but it is not connected with mathematical difficulties and more
or less is known. More essential point in our definition is the introduction
of accuracy ». If we admit » to be co we shall come back to the theory
of asymptotic series with positive and negative powers. By means of the
accuracy we reach more generality and give the theory connection with the
notion of local sets (at s—0). Although the definition is quite natural, if is
just the accuracy that leads to some peculiarities looking like exceptions
against the rules of the classical algebra.

Remark 2. Instead of (1.5), without resiriction, we could put

a(s)= > ans" +0,(s),

n=yp

i. e. we can avoid the work with the spectra N. We have preferred (1.5),
for example, because in this way the correspondence (1.10) is biunivoque
and the components », N, a, give us an idea how large the set of asump-
totic numbers is. We prefer (1.5) also in connection with conveniences to
be seen in the future.

Remark 3. One can introduce the algebraic operations in a simpler
way — as numbers, the set of whose representatives coincides with the set
of sequences obtained by means of the same operation executed over all
admissible pairs of representatives of the arguments (supposing by the di-
vision that the obtained sequences are arbitrarily determined for values of
s, where the denominator vanishes). In the same way we could introduce
also the quasiclassical functions but then we had to agree that functions
as x—x, x2, x:x etc. leading to imperfect results are not defined and this
would be a disadvantage. It is not possible to determine the result by
means of a single pair of representatives of the arguments because we shall
obtain a single sequence and it can represent different numbers, so that
the result would not be uniquely determined. Just the consistency of the
definitions of the algebraic operations and the quasiclassical functions was
the reason to introduce the asymptotic numbers by means of a relation of
subordinance and not of equivalence and to include the supplementary
representatives.

Remark 4. By finite «(1) we can say that the main part of the sum
and the difference (the product and the ratio) is given by the sum and
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the diiference (the product and the ratio) of the main parts of the terms
(factors) cut off up to»(4). But by infinite this does not hold because of the
conventions (1.8) and (1.9).

Remark 5. With the aid of the notion of the quasiclassical function
we can define general algebraic operations between asymptotic and ordi-
nary numbers. We have only to suppose that in (2.2) besides the parameter
and the real (complex) arguments & which are to be replaced by represent-
atives of asymptotic numbers, there are supplementary variables ci (j=1,

2,...,n), which remain ordinary real (complex) numbers:

(4.1) v—=f(x;, €4, 8).

So we can understand expressions as ax, (x+a)/(x—a), axy+b,... where
a, b,... are ordinary and Xx,y,...— asymptotic numbers. Making use of

the existence of s as argument in (2.2) and (4.1), we can make meaningful

also expressions like xs !, x+as? axys+bs ! etc. '
Remark 6.In all examples we gave, the results were perfect. There are also

examples of imperfect results ¥y =[x?] x-0, =09,y 2=[X*+ V]x=0, y=(=s+59. = Ops

y ?;+3];—5m,y—:[x_xf}—l]zlw (see (1.11). In the first two cases x

and y are real asymptotic numbers. Then the sequences 0,(s)? cover ob-
viously only the non-negative representatives of o0,, and the sequences
0}(s) —s+s2+0.(s) — only the representatives a(s) of o, having the form
—5—0y(5) a(s)=0,(s). In the next twoexamples x can be real or complex.
In each of them one gets only one sequence —a(s)=5 and a(s)—1, so that
the result is 5., resp. 1.

Remark 7. The general definition of quasiclassical function gives us
the possibility to define arbitrary rational and transcendental functions for
asymptotic arguments. If (f(s;, s) is rational, the corresponding asymptotic
function is defined unless the denominator is zero. As an example of trans-
cendental asymptotic function let us take

(4.2) y=sinx.
If
(4.3) X = (Xg+ XS+ X25%)2

. 1 5.-
(1.11) we set y (smxo+x,cosxos+(x,cos xo—-2——x;smxn)s—’)2, If x=

(X8 '+ xo-+x,5),, x 0 replacing in (4.2) we do not obtain a sequence
from A(s) because at s-— 0 appears an essential singularity. The asymptotic
function (4.2) is not defined for arguments with power »<<0. For u -0 it
is defined and its accuracy coincides with the accuracy of x.

As a next example we can take

(4.4) y=Inx.

If the power of x is negative, it is not defined. Let x be given by (4.3).
If x, +0, we obtain

_ ol X2 xf ) ¢2
y_(ln Xo+ 2 s-—l—( K ),

Xy 2.r02 /
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Ii x,- 0, we do not get a sequence from A(s) —at s=0 it has a logarith-
mic singularity. In general, the function (4.4) is defined only if the power u
of x is 0, the leading coefficient a, is not 0. Let now

(4.5) y=vx,
x being given by (4.3). For x,£0 we get

y=(Vrot s (57 ~aewm) )

For x,=0, x,- 0 the function (4.5) is not defined. In general, (4.5) is de-
fined for x with even (positive or negative) power u and is not defined
for odd w.

The origin of these restrictions for the set of values X, for which func-
tions like (4.2), (4.4) or (4.5) are deiined, lies in the circumstance that we
are cousidering asymptotic numbers with polynomial main part. By larger
classes of primary sequences A(s) we could push forward the limits of the
set X, where the quasiclassical functions can be generalized.

Remark 8 We know that passing from one theory to another (for
example, from the ordinary to the vector algebra) some elementary laws
(as commutativity, etc.) are violated and some notions are splitted in se-
veral notions (different product, etc.). To avoid ambiguities, more sophisti-
cated formulations of the statements and more elaborated mnotations (as dif-
ferent brackets) are needed. This phenomenon appears also when we pass
from the ordinary to the asymptotic numbers and that is why the work with
them requires more care.

By classical functions we have two ways for calculating values of
functions

(4.6) n=f(&, ¢jSs) (E=1,2,...,m; j=1,2,...,n)
of functions
(4.7) ci=g4(& ).

The first way requires to replace (4.7) in (4.6) and then to calculate » on
the basis of the function n—F(&, 8)=f(&;, gj(&:,S), ).

The second way is to calculate from (4.7) the values of ¢; for the given
values of & and then to find » from (4.6) as a function of the given & and
the found ;. The results are the same. By the quasiclassical asymptotic
functions these two ways are also available but the results (although as
exception) can be different. That is why we must introduce different nota-
tions for these two procedures. For the first one we shall write simply

(4.8) y=f(xi, z4(x:))
and for the second
(4.9) y=f(xi, [2/(x)])

Hence (4.9) represents not a kind but a generalization of the notion of
quasiclassical function.
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As an example let us take u=u'—v+w where v=x.z, w=y.z In
the first sense u— (x+y)z and for the accuracy of u according to (3.6),
(3.11) and (3.16) we get »' =min (uxi+vz pyi+vz, pz+ry, u.+vy), where i is
the number of annihilations in x-y and u, and u, are the ith elements
in the spectra of x and y. In the second sense u—u"-—[x.z|+[y.z] and|
according to (3.16) and (3.6) »’"=min (ux+vz, uy+v., tz+ry).

One sees that if annihilations are present and if

min (,Uxi vz, ttyi + "'z)< min (.“z+”y; uz+ Vy)

then »'<»”, i.e. u'-~u". It follows from hLere that the equality [x.z]4([y.z
=[x+ y].z showing the law of distributivity in the second sense (4.9) can
be violated (through by a special choice of x, y, 2).
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