Provided for non-commercial research and educational use.
Not for reproduction, distribution or commercial use.

Serdica

Bulgariacae mathematicae
publicationes

Cepauka

beiirapcko MareMaTu4ecKo
CIIKCaHue

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or
institutional repositories and to share with other researchers in the form of electronic reprints.
Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.

For further information on
Serdica Bulgaricae Mathematicae Publicationes
and its new series Serdica Mathematical Journal
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg



ON RATIONAL APPROXIMATION OF FUNCTIONS
WITH UNBOUNDED VARIATION

PENCO P. PETRUSEV

V. A. Popov (1975) proved the following estimations for the rational Hausdorff ap-
proximation and the rational local approximation of functions with bounded variation

R,(f; «)=0O(In1n n|n),
f(X)— (%) | = @l f, ¥ ; OIn In njn))+O(1/n), X € [0, 1],

where w(f, x;d) is the local modulus of continuity of the functionf in the point x€ [0, 1]
In this note it is shown that these estimations are valid for wider classes of functions
which include functions with unbounded variation.

For the class ot all functions f with variation -—— V' in the interval [0, 1]
V. A. Popov [1] has obtained the following estimation for the best appro-
Ximation of the function f by means of rational functions of degree n in
the Hausdorff metric with parameter «>0:

(1) R.(f3a)~ Cmax{ . In(Va(lnn)ln(anV)), }}

for anV -e, where C is an absolute constant.
Consequently

(2) R f;a)— O(Inln n/n).

On the other hand (see [1])
3 f(x)—gx) |=w(fix, ar(f,g;a)+r(f,&;5a)
where 7(f,g;a) (see [2]) denote the Hausdorff distance with parameter a
between the functions / and g;o(f;x,0)=sup , v =5 f(¥) f(x) is the
local modulus of continuity of the function f at the point x.

From (1) and (3) one can obtain the following local estimation: for

every function f bounded in [0, I] there exists a rational function g,(x) of
degree 7, such that for each x¢[0, 1]

(4) f(x) qu(x) o(f x, C(V)Inlnn/n)+C(V)/n,

where C(V) is a constant depending only on the variation V=V{(f) of
the function f in [0, 1].

Let us mention that the order of approximation in the estimations (2),
(4) is better than the corresponding order in the respective estimations for
polynomial approximations. By now it is not known whether the orders in
(2) and (4) are exact.

For functions, bounded in the interval |0, 1], V. A. Popov [3] bas intro-
duced the following characteristic
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(5) “(fim)= . I ) Sl —f(xi ) -
A similar characteristic has been introduced by Z. A. Canturia in [4]
One may obtain the following properties:

W fim)y—=Afin+1)=VIS), fsp.n)=p .x(fin), lim,..x(f;n) Vi(f). More-
over in most cases x( f;n)— O(n).

It is not difficult to see that the variation of f in the right hand side
of (1) can be replaced by x( f; 2n). Therefore

(©) R f3a) Cmax{  In[wx(f3;nm)(n n)in(amd f;n)), )}

an )’

for anx(fin)=e.

From (6) it follows that the estimations (2), (4) are valid for all func-
tions f, with x(f;n)—0O (In* n).

Our purpose is to characterize in a better way the functions for which
(2) and (4) are valid. We establish some relations between »(f;n) and
other constructive characteristics.

Denote by (f;4) the modulus of continuity of the function f. We
have (see [4)

¢7) A f3m)=2na( £ 1/n).
V. A. Popov [5] introduced the moduli
vi( f30) inf sup - | A f(x) |, &k 1,2,3,...,

a €V | g(x+Rh)—o(x)| =4

where 1V is the class of all functions, with variation <1, monotone in [0, 1]
as usual

A% f(x) IZ"(() AR flx -+ Lh).

One may obtain, using the moduli »,(f;9), (see [5]), direct and con-
verse theorems for spline approximation with free knots.

For k-1
(8) vi(f;0)=inf sup flx+h)y—f(x).

v €V | o (x+h)—e(x) | =4

Let us denote by EX f) the best uniform approximation of the func-
tion f by means of all step-functions with » 1 jumps, continuous either
on the right or on the left at each x¢|0, 1].

If f¢C]0, 1], then

(9 »(f;1/n)= 25:,'(/')-
For every bounded function f
(10) »(f51/n)<2EXf).

Let us mention that if we impose additionally in the definition (8) of
v,(/;0) that every function ¢ ¢ V is contionuous either on the right or on
the left at each x¢|[0, 1], then (9) holds for every f.

The characteristics »(/;n) and »,(/;d) are mutually connected. If f is
continuous (see [3]), then
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(1n) % nvi(f31/n)=x=(f:n)<3nv,(f; 1/ n).

The right inequality may be not valid for f not continuous. In this case the

following lemma in helpful.
Lemma 1. Let f be bounded in |0, 1]. Then

(12) A(fim= S n(f31/k)
and therefore
(13) AL m=22 EXS ).

Proof. Let ¢,(x), & 1,2,...,n are arbitrary functions from the class
V, i. e. for each & -1,2,..., ngg(x)is monotone and Vi(gz)=1.

Let us consider an arbitrary sum:

o £ f(x) f(xi_1) » O=xp=X%= - - - = x,=1.
i=1
We shall prove that
(14) sz sup fx+ k) f(x) .
k-1 qak(x+h)——<pkl.\') |=1/%
From (14) and the definitions (5) and (8) for =(f;n) and »,(f;9d) the
inequality (12) follows immedeately.
For any k, 1==k=n let us consider the point sets:
A;—{x€[0,1]: @a(0)+(s- 1)/k=gx)<g0)+s/k}, s=1,2,...,k—1,
Ap- {x€[0, 1]: @0) + (£ — 1)/ k= @p(x)= @x(0) +1}.
They have the following properties:
1. A,C[0,1] and A, is an interval, a point or empty set (D),
2. AsnA,— ) for s+,

3. LA [0, 1],

4. 1f x+h, xc A, then @ x+h) @x) =1/k
LLet us consider

o X f(xi) f(ximy)| - Zay,
=1 J=1
where a;>ayy, for j=1,2,3,...,n 1. Evidently there exist at least n—k+ 1
intervals [x; ,, X/, such that [x; ,, xi]C A for some s;. Therefore taking

into account property 4. of A, we get for j=£k, k+1,...,n
ul';_ sup f (X t h)_f(x) r‘

g (FH M)y () |1k

So «a, sup f(x+h)—f(x) for j=1,2,...,n.
1y

ml(nhb » (%)

These inequalities imply (14). Thus lemma 1 is proved.
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Bl Sendov [2] has introduced the modulus of non-monotonicity of
a function f for the purposes of Hausdorff approximations (see also |b]) as
follows:
1 |
(15) u(f38) 5 sup i sup [ f(x) f(x) + f(xa) flx)]
— fx0) flxa) )
Evidently «(f;0) ~w(f;d). The following lemma gives a relation be-

tween x(f;n) and w(f;0).
Lemma 2. Let f be a bounded function in |0, 1|. Then

(16) Afin) A fi4)+ 82 u(f11 k).
k-1
Proof. First we prove that
(17) A fidm)=z(f;2m)+dmu( f;1/m).
Let p~ 2m+1 and O0-=2,~—~2,—~-'-- -2, 1 are arbitrary points chosen

in [0, 1]. It is evident, that there exist points z, |, z,, 2,,,, so that
2 Zp - m
Consider now an arbitrary sum for x(f;4m):

4m
g2 f(xs)—flxs—)], O=x,=x,=--- X4y 1. From dm+1 -2m+1,
s=1
taking into account the above statement it follows that there exist x, |,
Xy Xgpq so that [ x,y x;4y - 1/m. From the definition (15) of w(f;0)
we get
F ) (x5 0) + 1 f ) S l= f(xp41) flxj—1) +2u(f;1/m).
Therefore

j

o2 ) Sl ) S S )+ F ) S )

+2u(f;51/m).

The expression on the right hand side is a sum for »(f;4m—1). One can
estimate this sum in a similar way, using a sum for x( f;4m 2) and so on.
The inequality (17) is obtained with 2m iterations of the above process.

Let » be an arbitrary integer and ¢ such that 29 ~n 2+l Setting
m—2¢ in (17), we get

(18) o f 3 249 el f 3 2641) + 26430 £ 1/20).

After adding the inequalities (18) for / 2,3,...,¢ 1 and taking into
account that »(f;n) and w(f;d) are monotone functions, we get

AL A 200 A 4) 18 Z 2 u(f5112)

291 n
<x(f;4)+8 2'2 w(fi1/R)y —(f; 4)-}-8.%‘I,,;(/; 1/k),

Aum

which proves lemma 2.



APPROXIMATION OF FUNCTIONS WITH UNBOUNDED VARIATION 153

Using (7), (12), (13) and (16) we get from (6):
Theorem. Consider the class of all functions [, which satisfy at
least one of the conditions

#(fin)=ClIn*n, o f;0)=<CdIn* ‘l) , »i( f30) -Co In® ; ,

In®n

b‘x( fH=cC w0 w(f;0)=0CoIn® L ,

where C and s are positive constants and supy . | f(x) =M.
There exist constants C\(«) and C,, depending on C, s, M so that
for every function [ of the above class

R(fia) - Cyla)inlnn/'n
and there exists a rational function ¢,(x) of degree n such that
f(X)—gu(x)  —o(f;x, Cilnlnn'n)+ Cy,'n, x¢|0, 1]
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