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HERMITE FUNCTIONS OF SECOND KIND
PETAR K. RUSEV

The system {K,(2)};” , of Hermite functions of second kind is defined as a second
solution of the difference equation for Hermite polynomials {/,(2)},-, We consider the
asymptotic properties of Hermite functions of second kind, the convergence of the series
o0

¥ b,K,(z) and expansions of analytic functions in series of Hermite functions of second
n=0

kind.

1. Definition and some properties of Hermite polynomials. The system
of Hermite polynomials {,(z)},-o is a system of polynomials orthogonal on
the whole real axis ( oc. ~o) with respect to the weight function exp ( - x?).
More precisely, the system {FH,(2)},— is uniquely determined by the condi-
tions

(1.1)  [exp( X?) Hp(x) Ha(x) dX 52" pm myn=0,1,2, ...

provided that the coefficient of z” in H,(z) is positive [1,(5.5.1)].
The system of Hermite polynomials can also be defined by means of a
formula of Rodrigues type, namely [l, (5.5.3)]

(1.2) exp( -2D)H(2)=( -1)*{exp(—2?))", n=0,1,2,...

From (1.2) one can derive without difficulty that the polynomial H,,.(z)
is even, and H,,, ,(z) is odd.

It is well-known that the system of Hermite polynomials is a solution
of the difference equation

(1.3) Vaty — 22Yn+20Yn—, 0.

One of the most convenient ways to prove this last property may be
the following: denote by y an arbitrary circumference with center at the
point z and then using the integral formulas for the derivatives of an
analytic function we get easily that for n=1,2,3,...

exp( 22 Hnpi1(2) —22H(2)+2nH, _4(2)}

oy’ p 0 exp (—{?)
( l)"+|nl(2«ﬂl) l;rdc { '(’:‘_z');'*,—l'}dcao-
The asymptotic properties of Hermite polynomials have been investi-
gated by many authors and with different methods. A full account of the
results with the corresponding bibliographic references is given in [1,8.22, 8.23].
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178 PETAR K. RUSEV

Put do,=1'2n+ 1)/ (n+1) and 29y = (2n+1) 2 '(2n+1)/1'(n+2). Then
the asymptotic behaviour of H,(z) for n—+ > and z bounded can be cha-
racterized by the following formula [I, Theorem (8.22.7)]

— . p1
(1.4) Hu(2)=inexp (22/2)cos[y2n +1.z (na)/2 ]k{;zk(Z)(Qn +1)*

~ p-1
+sinly2n+1.z2—(n7)/2 ],;1 ;uk(z)(?nJ,— )y*-2+h, ,(2)].

where 124(2), v(2) (B—0,1,2,...) are polynomials depending only on & and
{h,p(2)}, n=0,1, 3’:,"; p—-1,2,3,... are entire functions such that %, ,(z)
=0{n? exp(y2z--1. Imz))} uniforinly on every compact subset K of the
complex plane

One can derive from (1.4) simpler asymptotic formulas for Hermite
polynomials provided z is real or z¢ CN\( -, ©0). First of all from Stirlings
jormula it follows that i,-2(2n/e)”?[1 - O(1 Jn)l. Then putting p-—1 in
(1.4) and supposing that z-C\( oo, o) we get easily the following formula

(1.5)  Huz)=\2 exp(2%2)(2n/ey*? cos|V2n+1.z —(nx)/2][1 + ha(2)]

where {h{2)l7o are complex functions analyitic in the open set CN\( oo, o)

and such that 4,(z)- O(1/Jn) uniformly on every compact set Kc C\( oo, ~).
If z—x is real, by the same argument we get the formula

(1.6) H(x)— V2 exp (x2/2)2n/e)"" {cos [V2n+ 1 .x— (nn)/2]+ gu(X)}

where g.(x)—O(1yJn) uniformly on every compact subset of the real axis
(—co, o).

Let us note that the formulas (1.5) and (1.6) are given by E. Hille
in his paper [2].

2. Definition and elementary properties of Hermite functions of
second kind. The system of Hermite functions of second kind {K.(2)}.-0 is
defined by the equalities

_ pexp(—t)H,t)
(2.1) Ki(2)= __[o Sy dt, n=0,1,2,...

provided that z2¢ C\( oo, o). It is clear that for every n=0, 1,2, ..., Ky\(2)
is a complex function analytic in the open set C\( =0, ).

Using Rodrigues formula (1.2) one can derive from (2.1) after integra-
tion by parts another integral representation for Hermite functions of second
kind namely

9 ¢ nily) [ €XP(—#)
(2.2) Ku2)=( tytinlf 07 g dt

As it was mentioned above, the system {K,(2)} -0 is a (second) solution
of the difference equation (1.3). A proof of this fact can be given following
the same idea we used for Hermite polynomials. Indeed, for n--1,2,3,...
from (2.2) we get after some algebra that

Kup1(2) 22Ku(2) + 20Ky _y(2) = (1) *'mt T a‘;-{»e_!«”“"?}dt:o.

(t oyttt



HERMITE FUNCTIONS OF SECOND KIND 179

In view of future applications we shall give another integral represen-
tation of Hermite functions of second kind based on the relation between

Hermite and Laguerre polynomials. The Laguerre polynomials {L(2)} -0
with parameter a can be defined by the corresponding Rodrigues formula
[1, (5.1.5)].
(2.3) nlzeexp ( 2)LN(2) = {zrteexp (—2)}" (n=0,1,2,...).

Then, using the fact that /7,.(2) is an even polynomial, the relation
Hau(2)—(—1)1 2201 L 7P(22) (1, (5.6.1)] and the formula (2.3) for a=—1/2,
we get

o o 2y 7 (—1/2) (g2
Cexp (—2)H,,(¢) Frp exp(—#)L (£2)
Kon2)= 22| P dt = (— 1y 124l z | P dt

o t=172 exp (—#) LS 122) o (n—172 exp (— )}
o . ‘ n 4102 xp ( t)}
=(—1)" +122np| 2(}) e dt=(—1)y+12 "20f R dt.

After an integration by parts it follows that

oo sn—1/2 =
(2.4) Kon(2)=(—1)"+122"nl zfi(t—g_s%i’ dt.
T

In similar way using the relation F,,4,(2)=(—-1)" Q2+1p) z [12(29)
[1, (5.6.1)], we can derive the representation
+

n F "1 exp (=)
(2.5) Kant1(2)=(— 1)1 +1222+1p) J = dt.

3. Asymptotic formulas for Hermite functions of second kind. In
this section following the idea of Laplace’s method we derive asymptotic
formulas for Hermite functions of second kind ({:K,,(z)};‘f:o for n—>+4+ o and
z belonging to an arbitrary compact subset of N (— oo, ).

Let A be a compact subset of the upper half-plane H+={z¢C:Ilmz>0}.

For z¢ H+ and n-0,1,2,... we define

(3.1 7.(2) WN(nE1D)2[1- 22/(2n+2)]'2 +2/2.
The function r,(z) satisfies the equatiom ’

(3.2) 2¢2—22t+(n+1)=0,

which is equivalent to the equation (d/df){exp(-—£)/(£—2) "~1}=0.
For 1,(z) holds the following asymptotic formula
(3.3) t(2)= —iJ(n+1))2+42/2 +iz\32(n+ 1)+ O(1/nm),
uniformly on every compact subset of /#+ and in particular on the set A,

From (3.3) it follows that Imr,(2)<O for every sufficiently large n and
every z¢ A Then from Cauchy’s integral theorem we get that for every
2¢A and every sufficiently large n holds the equality

(34) Kau(2)( 1y +1n! [ exp ( —{?) de

in () ‘c__z)n+l

where [,(z) is the straight line parallel to the real axis and passing through
the point r(z). Putting = ¢+ rx(2)(—co<f<oo) in (3.4) we get that
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Kn(z)=(—1yr+ip P = exp[—20miz). 2 2]

[tn2) — 21" 1l {1+ e, () —2 ]}

If we define

(3.5) L= o ';[i‘("z‘f_’ - ; = “lat,
then
(36) K2 ryrim S )
From (3.3) it follows that
(3.7 t(2)— —(n+1)/2—iz\(n+1)/2+22/2+ O (1 )n).

Now we shall establish the asymptotic formula
(3.8)  [ta(2) —2]"*! = (—iy+1[(n + 1)/2] "+ D2 exp [—izy(n + 1)/2][1 + O(1 N n)).
Indeed
[ta(2)— 2]t = (—if(n+ 1))2y*+1[1 —iz(J2r + 2 —22/4(n+ 1) + O(1 /n2)]"+1
and having in view that
(n+1)log[l—iz/\2n+2—22/4(n+ 1)+ O(1/n2))— (n+ 1){ iz\2n+2
—2%/4(n+ 1)+ O(1/n?) ; [—iz/N2n+2 - 22/4(n+ 1)O(1/n2)]?

+O0(1/nn)}— —iz J(n+1}/2 + O Nn)
we get (3.8).
From (3.7) and (3.8) follows that

(39)  exp[ 2(2)]. [ru(2)—z] "
i (n+1)/2] (D2 exp [(n+1)/2  —2%/2+iz2n+ 2)[1 + O \n)].

Using (3.9), (3.6) and Stirling’s formula we can write

Ku(2)—= (- iy +12J=(2n/e)y? exp [ 22/2 + izy2n + 2] [1 + O(1 N n)] 1.(2).
(3.10) K (2) —(-iy*+'2Jn(2n/e)y? exp [ - 22/2+izJ2n+ 1][1 + O(1 Nn)] 1, (2).

It remains to investigate the asymptotic behaviour of /,(2) if n— 4 co
and ‘z¢ A. We shall see that
(3.11) lim, ;. 1(2))=\=/2

Uniformly on A.
We mentioned that the function r,(2) satisfies the equation (3.2). Having
this fact in view we get that

3.12 Foexpl-2. -0
(3.12) 14(2) _;i {1+ 22t [262(2) — 220,(2))}" dt
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T o5 l=2ta(2). t—87]

ok dt:;fl,,(t, 2)exp(—£2)dt,

where
(3.13) In(t, 2) =exp[  214(2) . £][1—20,(2)t (n+ 1)) 1.

We shall prove that for every 7°>0,
(3.14) lim, 4 4,(¢, 2)=exp (—£2)
uniformly for (¢, 2)¢| 7, T] < A. Indeed,

bl < 2 "( .t
log Iu(t, 2) = 2t4(2).t (n-+1)log{l ~_1,;i’T ;
Lo =T 2t 20002 2o o),
=—=2r,(2).t — (n+ 1,)_\1 Wr) By rn+1_ =T :z:; . {Fti-ﬁ)}

and taking into consideratation the asymptotic formulas (3.1) and (3.7) we
get that log 2,(¢,2) - 2+ O(1Jn) uniformly for (¢, 2)¢[- T, T]< A.
Since A is a compact set, there exists a positive a, such that |[Rez|
‘Re(x+iy) |x -a for 2z¢ A. Now we shall prove that for any >0
there exists a N N(§) such that

(3.15) Aty 2) = (1+0d)exp(2a t)
for every n>>N and every (£, 2)¢( <, o)X A.

It —4a -t=4a, then from (3.14) it follows that the inequality (3.15) is
satisfied for every sufficiently large n and (4, 2)¢[- 4a, 4a] <X A. Let us sup-
pose that [Z]| 4a and put 2r,(2)=E&,(2)+in.2) i.e. g(2)=2 Re 7,(2) and
na(z) ~21mz,(2). From the asymptotic formula (3.3) we get that &(2)=Rez
+O(1/\/n) and 9,(2) = ~\/2n+2 +Imz+ O(l,\/ﬁ), uniformly on A. Therefore,
‘E,.(Z) =>2a and ,(2) w,/(n+l),'2 for every sufficiently large » and every
z¢ A. Then, exp[—2r,(2)f] | exp[—ga(2)f] <exp (& (2)f ) —exp(2a(t]) and

n 27,(2)t 4 {1 Enl2)t }3+{'1n(2)t}2 Y 28p(2)t Si(z)t:’ 7,22)t2

|2 n41 ntl1 n+1 n+1 (n+1 R+ (n+1)2
2at | £ [£(|t]|—4a)
I Pomen =1t —fgr =1

i. e. in this case (|7 —-4a) we have the inequality 4,(¢ 2)|- exp(2a|f) for
every sufficiently large n and every z¢ A.
In view of (3.12), (3.14) and (3.15) it is not diificult to prove that

lim, ., . 7,(2) Fexp( 2£2)dt - \|x/2,

uniformly with respect to z¢ A. Then from (3.12) we get finally the asym-*
ptotic formula for Hermite functions of secone kind in the upper half-plane
Ht namely

(316)  Ku(2)—(—i)"'aJ2A2n/ey? exp | 222 +izy2n + 1][1 + k,(2)],

where {&,(2)}, o are complex functions analytic in the half-plane H+ and
lim,, 4w Ry(2) =0 uniformly on every compact set Ac H+.
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In order to get an asymptotic formula for the functions {K,.(2)}, o in
the lower half-plane H ={z¢C:Imz<<0} we make use of the relation

Kiz) Ku2z), n=0,1,2,..., which is satisfied for every z¢ C\( o, ).
In pacticular, if Imz<<0 from (3.16) and this last relation follows that

(3.17) KA2)=int'aJ2(2n/e)? exp | 22/2 izy2n+ 1)1 + kn(2)]

where k,(2)  k,(2). Therefore, {k,'.(z)},;,lo are complex functions analytic in
the half-plane /7 and lim, ... £/(z) O uniformly on every compact subset
of H . In other words, (3.17) is an asymptotic formula for Hermite functions
of second kind in the half-plane Im z2<0.

4. Convergence of series in Hermite functions of second kind. The
asymptotic formulas for Hermite functions of second kind can be used to
give a full solution of the problem for the region and the mode of conver-
gence of a series of the kind

oo

(4.1) 2 b,K(2)

n=0
with arbitrary complex coefficients. The proofs of the results are in principle
the same as the proofs of the classic Abel — Cauchy - Hadamard theorems
for power series. That is why we shall confine us only to the formulation

of the corresponding statements.

First of all, if  is an arbitrary real number, with /7'(z) we denote the
half-plane {z¢C:lmz>¢} and with // (z) the half-plane {z¢C:Imz<z}.
In particular A+(0)-—H*t and H (0) /1 are respectively the upper and the
lower half-planes.

Theorem 1 (Abel). If the series (4.1) is convergent at a point
20 € CN(—0, w0), it is absolutely uniformly conwvergent on ewvery compact
set Ac H (xo,)UH ( 1,) where v, Imz|.

Theorem 2. (Cauchy-—Hadamard). Let {b,), o be an arbitrary
sequence of complex numbers and

t,=max {0, lim,_, . . (2n4+1) " ?In (2n/e)" b, }

Then: (a) if v, -+ —, the series (4.1) is divergent for every z¢C
(oo, o0); (b) if 0<to<< + oo, the series (4.1) is absolutely uniformly
convergent on every compact set AcC Hi(x,)uH( 1,) and diverges at
every point z such that Imz <t,; (¢) if v, 0, the series (4.1) is absolutely
uniformly convergent on every compact set AcHtUH =CN\( - oo, ).

Remark. We say that a series Xf,(z) of complex functions is abso-
n-0

lutely uniformly convergent on a set £cC, if the series & fu(2)| is uni-
n-0
formly convergent on E.

5. General solution of the difference equation for Hermite polyno-
mials. Formula of Christoffel — Darboux. As a next application of the
asymptotic formulas for Hermite functions of second kind and also for
Hermite polynomials, we shall prove that the general solution of the dif-
ference equation (1.3) has the form
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(5.1) {aHn(z)+erx(z)}:of0
where a, b are arbitrary complex constants. In other words we have to show

that the solutions {/,(z)},_o and {K,(2)}, o of the equation (1.3) are linearly
independant for every z¢ CN\ (- oo, ~2).

Let us suppose that for some z¢ A+ and for every sufficiently large »n
holds the equality

(5.2) aH(2) +bKA(2) - 0.

Using the asymptotic formulas (1.5) and (3.16) for Hermite polynomials
and Hermite functions of second kind, from (5.2) we get that

ay2 exp (22 2) cos [y2n - -~ (n7)/2][1 + h,,(z)]
+b( iytla/2exp| 2%2+iz \/Zn +1][1 +ka(2)] -

Multiplying the last equality by ( #)” exp[z’,'2+1'z\/2"n;'1], we can write
it in the following form

(5.3) aexp z2.{exp[2izy2n+1  nai] + 1)1 + k()]
+b(— i) ay2 exp (2iz V2n + 1)[1 + ka(2)] = 0

Since Imz>0, lim, ,.exp(2izy27 +1) 0 and moreover lim,_ .. h.(z)=0,
lim, ,. k,(2) 0. Then from (5.3) follows that aexp 2? -0 and therefore a— 0.
From the asymptotic formula (3.16) we can conclude that K,(z)+0 for every
sufficiently large » and then from (5.2) we get that 6=0.

Let the sequence {/,},., be defined by the equalities
(5.4) I [exp(— x{H(x)dx (n-0,1,2,..).

Then from (1.1) we have

(5.5) li~\a2"n! (n-0,1,2,...).

Dividing the difference equation (1.3) by 2/,, we can write it in the
following canonical form

(5.6) Rn Yniy ,i’.yn +Rn—y Yn—1—0
where k, (2/,) '. From (5.6) we derive in the usual way the corresponding
formula of Christoffel — Darboux type, namely
1 A, 42 ,t)
(5.7) H(2) Ki2) + 7]
where
(-)8) 4 "+l(:y :) kr :flv (:)I\" t 1(:) Hr #I(Z)KV (:)}

o1 {Hs (YK Q) — Ho (2K, ()

6. A necessary condition for an analytic function to be represented
by a series in Hermite functions of second kind. One of the most impor-

tant problems connected with Hermite functions of second kind{Ku(2)},.0 is
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the problem of expansion of analytic functions in series of these functions.
We shall see now that not every analytic function f(z) can be represented
by a series of the kind

(6.1) fiz) - {gnf(n(z).

Theorem 3. Let 01, + oo and f(z) be a complex function ana-
lytic in the half-plane H*(z,). If f(2) is represented in H+(x,) by the series
(6.1), then for every positive ¢, f(z)=O(|z|) for z— > in the region defined
by the inequalities Re 22< - (1, +¢)® and Imz>1,.

Prooi. From Theorem 2 it follows that lim,_, . (2n | 1)"'2In (2n/e)"?b,

7,. Therefore, if ¢ is positive, there exists a B- B(¢) such that

(6.2) b, |—B(e2ny2 exp (1o +&/22n + 1]
for n—0,1,2, ...

Let 22 £+in Imz>7, and Rez?< —(7,+¢)? then from the integral
representation (2.4) we get that

> "1 2exp (- 1) i C 12 exp(—1)
n(2) <22 CXPUD) gt 9mp AR Ll P
| Kanl2) =2%"nd z'g[(t«sp+,,?]"'*""~’ ' " z';f (t—g)t!
—9mp) 2| [ & Pexp (=) .
S0 (i Pt
Having again (2.4) in view we can write
Kon(2) S (1)1 2][i(zo + )] Kol iz, + )]

Then from the asymptotic formula (3.16) for Hermite functions of second

kind follows that

(6.3) [Ko(2)| = Liz(4n/ey exp [ (ro+eW4n | 1]
where L is a constant.

On the same way we get the corresponding inequality for the functions
K2n+1(z) namely

(6.4) Koni1(2) = M[(d4n+2) e +V 2 exp[ (1o +eN4n+3]
where M is a constant.
Using (6.1), (6.2), (6.3) and (6.4) we can write that

FRNS 2 bl | K@) + 2 [banis] Kani(2)

BL |z .i:‘exp[ (¢/204n+1] + BMX exp| - (¢/2)Van +3]|=0(z))
n=0 n=0

and thus Theorem 3 is proved. )

7. Inequalities for Hermite polynomials. The asymptotic formula (1.4)
gives the behaviour of /,(z) as a function of n» provided that z belongs to
a compact subset of the complex plane. It is important to study the asym-
ptotic properties of F1,(z) as a function of both variables n and z. Some
results have been established in this direction under the condition that bet-
ween n and z exists a suitable relation (1, Theorem 8.22.9].
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In the general case if the variables #» and z are independant, the solu-
tion of the problem of the asymptotic behaviour of /,(2) is much more dif-
ficult. Instead of asymiptotic formulas in this case it is possible only to get
some inequalities for Hermite polynomials. An example of such an inequality
is the following one

(7.1) Hy(x)— Ofexp (x2/2)n'%(2n/ey?} (—co<x< 00),

which can be obtained from the asymptotic formula for the sequence of the
maximums of the functions {exp( -x2?) H,(x)2} on the interval (—cc, o)
[1, (8.91.10)].

In view of future applications we shall establish here an inequality for
Hermite polynomials in special domains of the complex plane. This inequa-
lity can be regarded as an O-asymptotic formula for /7,(z) as a function of
n and z.

Theorem 4. For every >0 there exists a positive constant B(r)
such that
(7.2) (e/2n)"? exp| 22— w/2n+1|H,(z) — B(r)

for every n—0,1,2,... and arbitrary z with |Imz - 1.
Proof. If n is an even positive integer, we have to show that the
sequence of functions defined as follows

(7.3) EA2)- (e/dn)y exp(— 22 —wfdn+1)Hy(2) (n - 0,1,2,...)

is uniformly bounded on the closed strip S(xr) {z¢C: Imz/- 7).
We shall use ane integral representation of Hermite polynomials with
even index, namely [1, (5.6.4)]

Hyu(2)— (— 1) a—12 227+ 1 exp z’.fxexp( ~£%). 12" cos (2zt) dt.
0
Having in view this representation, from (7.3) we get that

E(2) 2( 1)y a2 (e/ny exp (- wdn+1)[ exp(  £2) cos (22F) dt.
0

It is not difficult to show that the inequality |cos(2zf) ~exp(2:¢f) holds
for every z¢ S(r) and £¢([0,, + o). Therefore

E(2) - O{(e/n)* exp( n/é;ﬁ?x)zexp( £2 2t . 27 dt)

— 02 "(e/ny exp( tyan+ 1) [ exp(— £2/2+ /2. ) dt).
0

Let D, (2) be the parabolic cylinder function with parameter »[3, p. 117,
(4)). Taking into consideration the integral representation [3, p. 119, (3)] of
D,(z), we can write that

E(2)- O{2 "(e/n"exp( wan+12n+ DD _@ui1)( w/2)}.

Then using Stirling’s formula and the asymptotic formula [4, p. 123, (5)]

for the function D,(z), we get finally

Ez) Olexp[u(Yan +2—Jan +1)]} = O(1).
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In the case of odd n» we use the corresponding integral representation
of Hynyiy(2), namely [1, (5.6.4)]

Hopy(2)= (— 1) a—12220 2 exp 22 fexp (— 2)n+1sin (22t) dt.
0

8. Expansion of analytic functions defined by integrals of Cauchy
type in series of Hermite functions of second kind. The formula (5.7) of
Christoffel — Darboux gives us a (finite) expansion of the Cauchy kernel
( -2)~ ' in terms of Hermite polynomials and Hermite functions of second
kind. Therefore one can expect that analytic functions defined by integrals
of Cauchy type can be represented by series in Hermite functions of second
kind. It is our purpose in this section to show that this is really the fact
and as a first example of this kind we shall prove the following

Theorem 5. Let F(t) be a complex function defined and measurable
on the interval (—~o, ~) and satisfy the following conditions :

.
(@) [|F(t) dt<+ oo for every T>0;
°r

(b) F(£)=O|lt| “exp(—£2/2)] if |t — + oo, for some a>1.
Then the function

8.1) f2) - [F9 ar

can be represented in the “region” C\( o, -0) by a series of the kind
(6.1) with coefficients

1

L [HA)Ftydt (n—0,1,2,. . ).

-co

(8.2) b

Proof. From the condition (a) and the asymptotic formula (1.6) follows
that for every 7 >0,

fr H,(t) F(t) dt  O|(2n/e)"?).
I

Using the inequality (7.1) we get that for every 70,
T | Ht) F(t) | dt = O[n'®(2n/ey 2 [ t|~dt] O[n'5(2n/ey?).
t>-r teT

Therefore,
(8.3) I | Hat) F(ty dt — O[n'%(2n/ey?)

for n— + co.

In the formula (5.7) of Christoffel — Darboux we replace ¢ with z, z
with 7, multiply with F(/), integrate over the interval ( oo, ) and get
that for every z¢ CN\(  ~o, o)

>, (t 2)F(e)

(8.4) f2) X buKn2)+ [t —— dt .\;b,.K,.m
n=0 - “ e
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F(t)

10
+o JUHO Kook 2)—H ) K.(2)) g dt,
where the coefficients b, n—0,1,2,... are given by the equalities (8.2).

From (5.5), (8.3), the asymptotic formulas (3.16), (3.17) and Stirling’s
formula we get that

2t S UFOK, 1(2) — Hon() K2}

F(e)
——¢ at
— O{(27) [/ 2y ley 2((2v-+-2) /ey + 2 exp (— | Im z |2+ 3)
+ (= 1)VE(2v +2) /e +12(2v/e) 2exp (| Im z {2y + 1)]}
Op'Sexp( |Imzy2»+ 1))

Then from (8.4) follows that the series on the right side of (6.1) with
coefficients given by the equalities (8.2), converges for every z2¢ C (- o0, )
and its sum is the function defined by (8.1).

Theorem 6. Let 0<t1,<+ oo and Fw) be a complex fanction de-
fined and measurable on the strip S(r,) and satisfy the conditions:

(@) [[ Fw) dudv<+

S(I‘, o)
for every T>0, where S(T,1,) - {z¢C:Rez<T, Imz |z}
() F(w)-O|w—<exp( @) if w|-—>+oc, for some a>1.
Then the function
(8.5) f@) - [ [ 2 duav
3G W%

can be represented in the “region” C\ S(z,) by a series of the kind (6.1)
with coefficients

(8,6) ba- ;- [ [Hw)F(w)dudv, n-0,1,2, ...
n )

Proof. From condition (a) and the asymptotic formula (1.4) it follows
that for every 7 >0

[ | Hiw) Fw) dudv=0|(2n/e)"? exp (1, V2n -+ 1))

S, Ty)
Using the inequality (7.2) and the condition (b) we get that for
every 7'>0

[J | Ha(w) F(w) | dudv — O {(2n/e)"? exp (1,21 +‘”}) [ J w|— dudv}
' (7ixg)

)
—O(2n/e"? exp (rg(2n + 1)},
where R(7, t,) S(ro) S(7,1,). Therefore
(8.7) IS Ha(w) Fw) dudv - O {(2n/ey"? exp (xo2n+1)}

S(ve)

for n-— + oo,
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In the formula (5.7) of Christoffel — Darboux we replace ; with 2, 2
with w, multiply with F(w), integrate over the strip S(r,) and get that for

every z¢C™ S(7,) holds the equality

4 LA , 2)F
(88) @) FoKu) - 1 I Gy
n=0 S(1g)

where the coefficients b,, -0, 1,2,... are given by (8.6). From (5.8), (5,5),
(8.7), the asymptotic formulas (3.16), (3.17) and Stirling’s formula we get
that for every z¢ C\ S(z,)
I [ Muﬂdudiu Ofexp[ —(|Imz| —1oy2v + 1)}
S(ze) 2w

and using (8.8) we finish the proof of the Theorem.

9. A general theorem for representation of an analytic function by
a series in Hermite functions of second kind. From the formula (5.7) of
Christoffel — Darboux also arises the problem that under some conditions
it is possible to express the coefficients of the series (6.1) in terms of
Hermite polynomials and the analytic function f(z). Bevore giving a result
of this kind, we shall prove the following simple

Lemma. Let O—v,<<+ © and f(z) be a complex function satisfying
the following conditions :

(a) f(2) is analytic in the half-plane H(z,);

(b) for every =, 1,<<t<+ oo, there exists a o()>0 such that

f(2) O(z W) if z—>oc in the half-plane H*(x).
Then, for every compact set Kc Ht(r,) and every v such that ry<t
< +oo and Kc HH(z), uniformly on z¢ K holds the equality

1 ¢
©.1) @)= g0 [ 15 e

where l(r) 0HH(r) {2¢C:z t+ir, oco<t<+ ).

Proof. Let R>0 and denote with /(R, z) the segment | R+ ir, R+ it
and y(R, r) be the half-circle z ir+ RexpitO 6 -a). If 1, r,<<t<+ o, is
chosen so that Kc //'(z), for every sufficiently large R holds the equa-

lity (2¢K)
. 1~ £ ,. | (9]
9.2 z . di 4+ — RALY R/
(9.2) f(z) 2ni ,(,j\,'t)t z % §2mr(;{,.')£‘~z ¢

But from the condition (b) follows that for R— + o

{u)zd:: O(R )
wWRx) 5

uniformly on z¢ K and from (9.2) we get the representation (9.1).

Theorem 7. Let 0 1,<<+ ~ and f(z) be a complex function satis-
fying the following conditions :

(a) f(z) is analytic in the half-plane H'(x,)

(b) for every r, 1o<<1< + o, there exists x) such that f(z) O(z W)
if z--0c in the half-plane H*(z);

(¢c) for every 1, r,<<t< -+ oo, there exists w(r)>1 such that f(z
= Ol z|“Wexp( 2?)] if z—o0 and z¢lr) - d0H(v).
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Then, the function f(z) can be represented in H+(z,) by a series of
the kind (6.1) with coefficients

(9.3) o=y [ HAD Q) de (=0,1,2,..).
n 1)

Prooi. Using the condition (c) and the inequality (7.2) we can easily
prove that integral on the right side of (9.3) is absolutely convergent for
every n—0,1,2,.... Indeed, H,(0)f(2) O(z| ) if ;oo and ¢ (7).

Let z¢ H+(z,) and r,<<7<C +co is chosen so that z¢ /*(z). Then the
Lemma and the formula (5.7) of Christoffel — Darboux (after changing -
and z) give us that

(9.4) f@) - 20.K2)= gy [ 180 det Sgny [ HAO QAT KA2)
1 1 ! .1 4,062
“ani Jeme T3 7, HAOKAO} O =5y [ s — i

1 . » (<
= ity | ROK12) HLar@) K2} L
Using the condition (c), the inequality (7.2), the asymptotic formula

(3.16) for Hermite functions of second kind and Stirling formula, we
get that

4.71"7 l('{) {HF(C)KV+ l(z) B H'+ l(g)K’(Z)} Z[‘—E‘;— d:

= O{(2 ) (20 /1y ((2v +2) )+ 1 2exp (/2r + 1 - Im 22y + 3)
+(2v 4 2)/e) 12 (20 /ey exp (w/2y +3 —Im 22» + 1) [ ttir |—1—u)dt)

Ofexp [ (Im z—2W/2r+ 1]}

Then from (9.4) follow the statements of the Theorem.

10. Completeness of the system of Hermite functions of second Kind.
Let 0- 7y<< +oc and A(r,) be the space of all complex functions analytic
in the half-plane F*(r,). From Theorem 3 it follows that if we consider the
space A(r,) as a topological vector space with respect to the topology of
the uniform convergence on every compact subset of /(z,), the system
{K,(2)}x", of Hermite functions of second kind is not a base in the space
A(ro). Therefore, it is interesting to solve the problem of completeness of
the system {K,(2)}r-0 in the space A(ry). The answer is given by the
following

Theorem 8. If 0- 1,<-} ~, the system {R/(2)}," o of Hermite func-
tions of second kind is complete in the space A(ry) of all complex func-
tions analytic in the half-piane H*t(x,).

Proof. It is sufficient to prove that every rational function with poles
outside the region Ft(r,) and satisfying the condition R(->)- 0, can be
represented in //'(r,) by a series in Hermite functions of second kind.
Indeed, if this is the fact, we san use further the classical theorem of Runge
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for approximation (in the sence of the topology of A(z,)) of analytic func-
tions f(2)¢€ A(r,) by means of rational functions [4, p. 174, (1.5)].
Since every rational function R(z), such that R(c~) - has the form
m Mg
=3 3 T
R( ) s=1 k=1 (z—zs)"
it remains to show that every rational function of the kind (z -z,)*
(k—1,2,3,...) can be expanded in a series of Hermite functions of second
kind. We shall prove namely that for every positive integer holds the
equality

(k-2 %t 2

(10.1) P n:;::ﬁ{” "n(n—1). . (n—k+-2)Hu i (20)Kn(2)

uniformly with respect fo ¢ on every compact subset of the hali-plane
H*(r,) where 7,= Imz,]|.

Using the relation //(2)=2nH, ,(2) [1,(5.5.10)], we get from the Chri-
stoffel — Darboux formula (5.7), after derivation with respect to z, the
equality (v —k)
(k—pr2—*tt _

C—2*

(10.2) y L 'n(n 1) . (n— k+2)H, 1. (2)KnA?)

—1

P L o5k
+ &N (k;s_])'?—{l,"'v(v ) v s D) H, (2K, (0)

~0 -zt

L) 1) sE2)H, 1 (DK, (2)).

Let =2, and ¢ H*(z,) i.e. Imz> Imz, . Then, using the asymptotic
formulas (1.5), (3.16) and Stirling’s formula, we get that

L 1)...(v s+2)H,_(2)K,:(5)
O{w2exp[/Imzy Y2» 251 Im¢.yY2v3])
and respectively
Lo+ 1) 1) (v s+2)H, 5.1 (20K, (2)
=O0p2exp||Imz, .J2r 25 3—Imz.{y2v ! 1]}
and then from (10.2) the representation (10.1).
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