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DETERMINATION BY NOMOGRAMS OF THE ZEROS OF A
CROSS PRODUCT OF DERIVATIVES OF BESSEL FUNCTIONS

IL. Z. SALCHEV|

The method given in L. Salchev & V. Popov (1973) is applied to the determi-
nation by nomograms of the zeros of the equation I:(aﬂ) Y; (a)—l;(a) Y:(aﬂ)=0 for real »
and g>0.

Several papers [I, 2, 3, 4, 5, 6] deal with questions concerning the zeros
of the equation

M I(@)Y (@)~ (@)Y (aB) =0,
where //(2) and Y’(a) are the first derivatives with respect to a of the

Bessel functions of the first and second kind (8>0). In some of these pub-
lications [1, 2, 7, 8] are given tables or graphs for finding the zeros of the
equation (1) for several positive integer values of » and for differeni values
of the parameter 8. The most extended table can be found in F. Bridge
and S. Angrist[8. J. McMahon [9] gives an asymptotic expression for
the zeros of the equation (1). V. Smorgonski and V. Ilarionov [10]
give some bounds for them depending on the zeros of the Bessel functions.
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It is shown in[11] that the solution of the equation (1) for any non-
negative values of » and positive # can be treated in the same way like
that used in[12] for solving a cross product equation containing Bessel
functions. In order to make this paper selfconsistent let us recall the re-
sults of [11]:

a) The function
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(2) P (x) =Y (a@)/(a), »>0
is introduced. Then (1) becomes
(3) @' (a)= ¢/ (aB).
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It is established that ¢/(a) is a continuous decreasing function of a for
O<a<» and a continuous increasing function of a for a>>» and has a single
relative minimum at a—» as d¢/(a)/da—0 and d*@)(a)/da® - 4na®['*(a)>0 at
a—v. This minimum as a function of » is shown in Fig. 1.

The function ¢/(a) is pseudoperiodical in the sense of [12], i. e. there
exist numbers =, , r=0,1,..., called pseudoperiods of order r, such that

we have

*) #(@) (et ) = ollat )= = latal,).
b) It is also shown that for any positive a and »
(5) dx, ,/da<<0O and dn] /dv>0.

The function @)(a) and the pseudoperiods =, r=0.1,2 are shown in
Fig. 2. The zero pseudoperiods =/, exist only for a<» and while they go
to zero when a—» by values smaller than », all other pseudoperiods =)  >rx,

r—1,2,... go to ra when a—co.

Proposition. The pseudoperiods '  , of the functions ¢’ (a) are
equal to the pseudoperiods =, of the functions @(a).

The proof of this proposition is a replication of the proof given in [12].

According to (3) and using the pseudoperiodical properties of the fun-
ctions ¢’(a) given by (4), we can write that

(6) a—1/=x.,.

Then for the smaller argument a, (equal to a, if >>1 or fa, if p<1)
of the function ¢(a) from equation (6) we get
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(7) a,=m,,/(B—1) for f>1
or
(7 a,=m, /(1) for B<I.

Fig. 3

From equations (7) and (7’) it follows that the abscissa of the cross-
point of the curve x] - () with the line z/ (8 1)a for g1, or with
the line =/ ~ (8~' l)a for <1 is the value of the smaller argument
a, (a, or a,f) in the equation (1) (Fig. 3).

Let us note also that the pseudoperiods a
the same cross points (Fig. 3).

If we dispose with a sufficient number of curves of the kind a,,~n (a)
and straight lines =/~ ba, where b=§ -1 if 1 or b—871 1 if <1, we
can construct nomograms for solving the equation (1). According to the
properties of the pseudoperiods a| . given by (5), interpolation can be used
in such nomograms whenever necessary.

In order to draw curves of the kind a), —~=a (a) one has to use tables
of the first derivatives of the Bessel functions of the first and second kind
according to equations (3) and (4). As tables of the functions l(a) and Y/(a)
are scarce [13] one can use tables of the Bessel functions of the first and
second kind. Indeed, by the recurrence formulae (14, pp. 45 and 66] equation
(3) can be written as
(8) Yit+i(@)—Y,—i(a) ¥,+1(af)—Y,—1(ap) .

1, y1(a)— 1, —1(a) Iy v W(aB)—Ir—1(aB)

As tables of the Bessel functions Y, (a) for » not an integer are also
scarce [14], when » is not an integer it is convenient to use the recurrence
formulae [14, p. 4] and the fact established in Proposition 1, namely that the
functions Y/(a)///(a) and /' (a)///(a) have one and the same pseudoperiod x
The necessary pseudoperiods can be determined from (4) and
(9) I—v—l (a)—l—9+| (ﬂ_) I—r-—l (ﬂﬂ)—l—v+l_(ﬂﬂ)

in (6) are the ordinates of

r

Ng

Ih—a)— 1,4 1(a) I af)—T,  1(af)
or from (4) and
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10 vi—a)lat+l—v+1(a) vi—aB)|afp+1—,+1 (ap)
(10) oI, @ja—l—A@) vl (ap)af—1,—1(ap)

instead of using (4), (3) or (8).

It is clear that all the values a, or x., satisfying the equation (3)
would satisfy equations (8), (9) and (10) as well. Then using the available
tables of Bessel functions [13, 14, 15, 16, 17] and the equation (3), (4), (9)
and (10), values of the pseudoperiods =) can be found and graphs of the
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480

4,50

3,50

curves :n"’r:'—n"_'(a) can be drawn. They are shown in Figs. 4,5,6 and 7
For big values of a the graphs of the pseudoperiods n:', can be drawn
using tables of the zeros of the functions //(a) and Y ,(a)[18], as evidently
in this case we have

(1 1) ﬂ:.r( jlv..t)=j-,».:+r - j::
as well as
(l 2) n:.r(—v;.s) y:.s+r ) —V’v.: .

These graphs are shown in Fig. 8.
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Finally consider the following examples:
a) Let »— 075 and g—=3.4. For b=8-1-24 from Figs. 1 and 3 we

get a_o =g = 0.355; TC_3/4,0 = TT3/4,0 0.852 and ;1 =ay = 1.45 5 TT—3/4,1 — T3j4,1

—3.48.
b) Let » -2 and B—1.7. For b=8-1=0.7 from Figs. 1 and 4 we get

ap—a,—1.49; 35— 1.044 and a; —a,— 4.8; 73,1 3.36.
c) Let » =17 and -—-0.909. For b-p-1 1-0.1 from Figs. 2 and 1 by
interpolation we get

ag—ayf —16.2; iz, —1.62 or ap—17.8 and
a,—a,f—358; iz, ~3.58 or a,—39.38.
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