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REPRESENTATION OF ANALYTIC FUNCTIONS BY SERIES
IN HERMITE POLYNOMIALS

PETAR K. RUSEV

We consider the problem of representation of the coefficients of a series in Hermite
polynomials in terms of Hermite functions of second kind and the given analytic function.

The system of Hermite polynomials {f,(z)}>, is a system of polyno-

mials orthogonal on the whole real axis with respect to the weight func-
tion exp(—x?), i. e.

(1) T exXp(— X2) H(X) HoX)dX =\72% | O (m,n=0,1,2,..).

The system {H,(2)}>, is uniquely determined by the conditions (1)
provided that the coefficient of 27 in H,(2) is positive [1, (5.5.1)].

Hermite polynomials can be defined also by the formula of Rodrigues,
namely [1, (5.5.3)]

(2) exp (—2)Hy(2)= (— )" {exp(—2?)}» (n=0, 1, 2,...).

It is well known that the system of Hermite polynomials is a solution
of the difference equation y,.1—2zy,+2ny,1=0. The system {K,(2)};_, of
Hermite functions of second kind is defined as a second solution of this
equation. More precisely

Ki)=— [0 6t (n=0,1,2,..0)
provided that z¢ —C(— oo, oo).(C denotes the complex plane).

By using (2) one can easily get another integral representation of Her-
mite functions of second kind, namely

1\ +1 mM —

(3) Ka2)=(—1) rzt_gfo (t_z)ant’ =0, 1, &.:.

Basing on the asymptotic formula for Hermite polynomials [1, Theorem
8.22.7| it is not difficult to describe the region and the mode of conver-
gence of a series in this polynomials. There is also a formula of Cauchy—

Hadamard type [1]. We shall formulate only the corresponding statement
without proof.
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Theorem 1 (Cauchy — Hadamard). Let {a.};>, be an arbitrary se-
quence of complex numbers and define
(4) o= — lim (2n4+1)"'2 In |(2n/e)"?a, |.

n— oo

Then: a) if 1,=0, the series
(5) @)= Z anHy(2)

is divergent at every nonreal point: b) if 0<t,= +co, the series (5) is
absolutely uniformly convergent on every compact set Kc S(z,):—{z¢ C:
Imz |<t,} and diverges at every point zcC —S(z,).

The solution of the problem of expansion of analytic functions in se-
ries of Hermite polynomials was first given by E. Hille [2]. The corres-
ponding result is the following

Theorem 2 (E. Hille). Let f(2) be a complex function defined in
the region S(zy) (0<t,=-+<). In order to represent f(z) in S(z,) by a se-
ries of the kind (5) is necessary and sufficient that f(2) is analytic in
S(r,) and to every given r, 0- 1<, there exists a B(r) such that

(6) |f(2) =|f(x+iy)|=B(r) exp{(x* -¥?)/2—| x [(*—y?)"?}

for —co<x<+o and |y|=t.

As it was mentioned above, in this paper our purpose is to discuss
the problem of the representation of the coefficients of the series (5) in
terms of Hermite functions of second kind and the analytic function f(2).
First of all we shall prove some auxiliar statements.

Lemma 1. Let f(2) be a complex function analytic in the strip S(z,)
(0<19=+ o) and suppose that f(z) can be represented in S(z,) by a se-
ries of the kind (5). Then for every n=0, 1, 2,... holds the equality

) an=(l)""_] exp(—)H,(O)f(t)dt,

where I,—\a2" n\.
Proof. From Theorem 1 follows that for every 0<r<t, there exists

A~ A(x)>>0 such that |a,|= A(e/2n)"? exp (—/2n+1) for every n—0,1,2,..-
Using this last inequality and also the inequality [1, (8.91.10)] for Hermite
polynomials, we get easily that

anH()H () exp (—12) = O(n"/5 exp (—w/2n+1)H,(t) exp (—2/2)},
it k=0, 1, 2,... is fixed. Since

_7! H(t)| exp (—#2/2)dt < + o

and the series = n'Sexp(—mn/2n+1) is convergent, we conclude that the
series X o anf1,(t)Fx(t) exp{—1£?) can be integrated term by term on the
interval (—co o). But its sum is the function H,(t)f(t)exp (—¢?) and hav-

ing in view the orthogonality relation (1), we get the equalities (7).
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Lemma 2. Let f(z) be a complex function analytic in the region
S(ro) (0<rp==+ ) and for every r, 0<z<t, there exists w(r)<} such
that f(2)=0(z|*®) for z — o and z¢S(x). Then for every compact set
Kc S(z,) and every © such that 0<r<r, and Kc S(x), holds the equality

oy (=1 Flat Ff fE—ix)  f(—t4in) -
8  f(2) ——2;,.——_0{{(2_‘“1),,“ P lat (n—-0,1,2,..)

uniformly on z¢K.

Proof. We denote with A(R, ) the rectangle with vertices at the po-
ints A= —R—ir, B=R—ir, C=R-+tir, D~ —R+ir, i. e. the closed region
defined by the inequalities | x| <R and |y|=r. From the integral formulas
for the derivatives of an analytic function we get that for every z¢K and
every n=0,1,2,...

foz)= -1t I _f(i’_d(’

288 o 4R, v (£ —2)"+!

where 0A(R, ) is the boundary of A(R, 7).
Having in view that

. R s

AB (—z)" ! —R(z—t+ir)"t!

R .

cb (C—z)"+l_ —R (z+t—i1)"+l
and
1)
gy A= ORI ) (R — + o)
§i(9)
AT = ORI (R = )

uniformly on z¢K, we get the equality (8).

The main result of the paper is the following

Theorem 3.Let 0<zy,=—+co andf(z)be a complex function satisfying
the following conditions :

a) f(2) is analytic in the region S(z,);

b) for every r, 0<t<z,, there exists 8(r)>0 such that f(z)= O 2|—¥=),
if 2 — co and z¢ S(v).

Then f(z) can be expanded in the region S(z,) in a series of the kind
(5) and for every r (0<x<z,) and every n=0, 1, 2,... holds the equality

©) Gn= g Kt —in) f(—in)— Ko —t + i) (— -+ i)}t

Proof. From the condition b) follows that the function f(2) satisfies
the condition (6) of Theorem 2. Therefore f(2) can be represented in the
region S(r,) by a series of the kind. Having in view Lemma 1 and formula
(2), we get that
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(10) @y =(—1y ()" [f(x) exp(—x2)"dx, (n=0, 1,2,...).

We prove now that for every v (0<<t<7,) and every n=0,1,2, ..
) fOx) - O x[/) (x| = +c0).

From the condition b) of the theorem follows that f(z) satisfies the
condition of Lemma 2. Then from (8) we get that for | x| — + oo

(12) Fo(x)— 0/ 7___)"(') di+ TL dt!
% |x—t4ir|*H] o | X4t—iz P! I
[ T ()07 \ [T e, 0P®" \
OL;C [(t— xR+t D2 dty=0 lgojo [(£— xR+ v A
where ¢(f, x)=[({—x)2+22(24+1?)"! ( o<t<+o0; — <x<+ ). The

function ¢(¢, x) considered as a function of 7 is bounded on the interval

co, +o0) for every real x. We shall see that in this interval ¢(¢, x)=
q[tl(x) x], if x>0, and o(f, x)<s¢[ty(x), x), if x<<O, where 2£(x)—x
—\x2+ 4% and 24y(x) — X +\/x?+ 422 Indeed (0/0t)q (1, X) = 2x(12 + %)~ 2[: ¢, (x))

X [t—ty(x)] and if x>0, ¢(f, x) increases on the interval (— oo, #,(x)], decreas-
es on [£,(x), £y(x)] and increases on [f{,(x), + co). Therefore, at the point
t—t,(x) this function has a local maximum and its value is ¢[f,(x), x]>1.
Since lims,—w@(Z, X) = lims, ; wp(Z, x)— 1, @[t,(x), x| is the greatest value of ¢(Z, x)
on the interval —oco<{f<{+oo. In the same way we get that ¢[fy(x), x] is
the greatest value of @(4, x) on the interval —oco<f< + oo, if x<0. Since
iMooty (X)=lim,, fy(x) =0, we get easily that ¢[f,(x), x]=O(x?), if
X — +oo, and respectively ¢[fy(x), x]= O(x?), if x — —oo. Then from (12)
follows that

f(x)=Of x %= T[(t—x)’+”|—("’ 1+ 2t}

Of x [0 [(£2+13)~(n+1+50Ad4) — O(| x |42

and the equality (11) is proved.
From (10) after integration by parts follows that

ap,=1I! 7f(’"(x) exp(—x¥dx n-0,1, 2.

and according to Lemma 2 we get further that

- (—n"“m J(f:"'l“,‘«—} —x¥d
(13) a, T f(t friey exp (—x?dx

(="'l 2f T f(—t+inydt ) s
2ail, P B brsrey )er’exp(—x)dx.
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Having in view the condition b) of the theorem, it is not difficult to
assure that in the last equality we can change the order of integrations.

Therefore

(=1 lnt w7 exp(—atde N
" 2ail, _;[, l_!; ('X——t-}—it)’H'l,f(t lt)dt

(1" a2

= Toexp(—xWdx o 4
qaily I\ S gy I

il dZ{K,,(t—ir) F(t = it)— Ko —t -+ i) f(—t + in)}dt

and thus Theorem 3 is proved.
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