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SUPERNILPOTENT AND UNDERIDEMPOTENT RADICAL CLOSURES
OF RIGHT IDEALS

LYUBOMIR 1. DAVIDOV

The concept of radical closure was introduced for the first time by V. A. Andruna-
kievi¢ and Yuu M. Riabuchin (1974). Their aim was to get some results conccrning
the structure of the right ideals in a given associative ring. similar to the concept of ra-
dical. We shall show that the concepts : supernilpotant and underidempotent, special radical
can be defined for radical closures’ right ideals. The results are similar to those of V. A.
Andrunakievi¢ (1958).

1. Preliminary remarks. Let R be an associative algebra (nol neces-
sarily with a unit) over a commutative ring @ with unit. We shall denote
by SB(R) the set of all right ideals of R, and with 1I(R) — the class of all
pairs (A, B), where A, BR(R) and ADB. If (A, B)(R) and C is a right
ideal of R, for which BCCCA, we shall call the pair (C, B) a subpair of
(A, B) and the pair (A, C) a factor-pair of (4, B). A pair (A, B) is called
a zero pair if A=B. Further we shall suppose that every subclass of the
class 11(R) contains all zero pairs.

Definition 1. [3] The mapping o:WR) — W(R) will be called ra-
dical closure if the following conditions hold:

o. 1. For every pair (A, B)XW(R): BCo(A, B)CA.

P % 2. For every pair (A, B)Y¢\W(R): o(A, e(A, B))=e(A, B) and ol(o(4, B), B)=
o(A, D).

0. 3. If BCCCA are right ideals of R, then o(A, C)DelA, B) and
o(C, B)Co(A, B).

With every radical closure ¢ one can connect the following two class-
es of pairs

Rie) —{(A, BIW(R) | o(A, B) - A}
S(e)={(A, B)X(R) | o(A, B) - B}

It is clear [3] that for every pair (A, B)¢N(R) holds o(A, B)—~ N Ta~ Qg
where {T,} is the set of all right ideals of R, for which (4, 7T,)¢S(e) and
ADT.DB, and {Q;} is the set of all right ideals of R, for which ADQ;DB
and (Qg, B)¢R(e). This shows that the radical closure g is completely de-
termined if one of the classes R(g) or F(p) is given.

Definition 2.|3) Let ¢ be a radical closure. A pair (A, B) will be
called o-radical if o(A, B)- A and o-semi-sin ple if o(A, B)=B.

Definition 3. [3] The class FCW(R) will be called a radical class
if there exists a radical closure g, such that F - R(g). The class CBCNR)
will be called a semi-simple one if there exists a radical closure g, such
that B= ().
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The following characteristics of radical and semi-simple classes are gi-
ven in [3].

Proposition 1. A class of pairs FCW(R) is a radical one iff:

(i) If (A, B)¢%, then for every right ideal D of R holds (A+D,
B-+-D)¢<t.

(iiy If for every non-zero factor-pair (A, C) of the pair (A, B) there
exists a non-zero subpair (D, C)¢F, then (A, B)¢F. .

Proposition 2. A class of pairs BCWR) is a semi-simple one iff :

(iii) If (A, B)¢B, then for every right ideal C of R holds: (ANC,
BN C)eF.

(iv) If for every non-zero subpair (C,B) of the pair (A, B) there,
exists a non-zero factor-pair (C, D)¢B, then (A, B)cB.

Definition 4. [3] If o, and ¢, are two radical closures, then we
shall say that o, o, if for every pair (A, B): 0,(A, B)Coy(A, B).

It is clear, that the following three conditions are equivalent : (a) ¢, 0
(b) R(e,)TR(09)3 (€) S(e) DF(ea)-

2. Hereditary radical closures. First we shall prove the following

Proposition 3. If for the class B,CWR) (iii) kolds, then a ra-
dical closure o' exists, such that B,CS(o,) and for every radical closure
n, for which B ,CS(n) we have o' .

Proof. Let <G be the class of all pairs (A4, B)f11(R), such that for
every non-zero subpair (C, B) or (A, B) there exists a non-zero factor-pair
(C, D)¢B,. It is obvious that T,C)T.

We shall prove that for <8 (iii) and (iv) hold. Let (A, B)¢B and C be a
right ideal of R. 1f ANC=BNC then according to the agreement already
made at the beginning of this paper: (ANC, BNC)T. Let ANC-+BNC
and (D, BNC) be a non-zero subpair of (ANC, BNC). Then (D+ B, B) is
a non-zero subpair of (A, B). (If D+ B= B, then DCB and as DC AN CCC,
then DCBNC, which is not true). Since (A, B)¢“B, then non-zero factor-
pair (D--B, E)®, of (D+B, B) exists. Now it follows that (D+B)ND,
END)=(D, END) is anon-zero factor-pair of (D, BNC) and (D, END)ET,.
Therefore (ANC, BNC)B or B has the property (iii). One checks that
(iv) holds directly. But then by proposition 2 there exists a radical closure
o, such that B-—=d(¢*). Finally let » be a radical closure, for which TCJ(n).
Then B S(o)”S(n) and therefore n=po'. Thus the prcposition is proved.

The radical closure of shall be called upper radical closure, determin-
ed by G,.

Definition 5. The radical closure ¢ is called hereditary, if the fol-
lowing condition holds:

(v) If o(A, B)— A, then every pair (C,B), which is a subpair of the
pair (A, B) one has o(C, B)—C. .

Lemma 1. The radical closure ¢ is hereditary iff:

(vi) For any pair (A, BWR) and for any subpair (C,B) of (A, B)
we have o(C, B)=0(A, B)NC.

Prooi. It is clear that (v) follows from (vi). Conversely let ¢ be a
hereditary radical closure, (A4, B)c11(R) and (C, B) be a subpair of (A, B). It
is obvious that o(C, B)co(A, B)NC. But BCe(A, B)(N1CCe(A, B) and since
oe(A, B), B)—o(A, B), then o(e(A, B)NC, B)—=o(A, B)NC. 1t follows that
oC, B)Do(A, By C. Finally we have o(C, B)=e(A, B)NC.
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We see already that if ¢ is a radical closure, then for every pair
(A, B)((R) it holds o(A, B)—=\T., where {T,} is the set of all right ideals
of R, for which BCT.CA and (A, T,)ES(e). We shall be interested in such
upper radical closures ¢ for which ¢/(4, B)=)T7,, where BC7,CA and
(A, T,)EB,.

Proposition 4. If B,CW(R) is a class of pairs, satisfying (iii), then
the conditions:

(a) of is hereditary;

(vii) For any pair (A, B)QW(R) it holds o'(A, B)=NT., where {T.}
is the set of all right ideals of R, for which ADT,DB and (A, TG,
are equivalent to the condition :

(viii) If for the non-zero subpair (C, B) of the pair (A, B) there exists
a non-zero factor-pair (C, D)¢B,, then there is a right ideal T of R, such
that BC TCA, T does not DC and (A, T)cG,.

Proof. Let o be a hereditary radical closure and let G, satisfy con-
dition (vii). Let still (A4, B)¢\I(R), (C, B) be a non-zero subpair of (A, B) and
(C, D)¢B, be a non-zero factor-pair of (C, B). Then ¢/(C, B)+C and since
0'(C, B)=0(A, B)\C one has C does not C ¢ (A, B). On the other hand,
o'(A, By NT., where {T,} is the set of all right ideals of R, for which
BCT.CA and (A, 7,)¢%B,. But then there exists a right ideal 7, or R, such
that BC7.,C A, C doesnot C 7, and (A, 7T,)¢G,.

Conversely let B, satisfy condition (viii). First we shall prove that o
is a hereditary radical closure. Let (4, B)f\I(R), o'(A, B)=A and (C, B)
be a non-zero subpair of (A, B). Suppose o/(C, B)=C. Then the pair
(C, ¢/(C, B)) is a non-zero one and (C, o/(C, B))cS(o%). It follows that there
exists a right ideal D of R such that C2ODDo/ (A, B) DB, C+D and
(C, D)¢B,. By (viii) there is a right ideal 7 of R, for which BCTCA,
T does not D Cand (A, 7)¢B. But then TC A, T+ A and T—o(A, T)De'(A,B)

- A, which is a contradiction.

Finally let (A, B)f\W(R) and let {7,} ac/} be the set of all right ideals
of R, satisfying the conditions: BC7,CA and (A4, 7,)¢B,. Denote S=NT7,
(a€J). It is obvious that we have S-—o/(A4, S)Do’(A, B). Suppose SDo'(A, B),
S +0/(A, B). First it is clear that ¢’(A, B) +S (if S=0/(A, B), then SCo/( A, B),
which is a contradiction, because o/(A, B)CS and ¢/(A4, B) +S). But then
the pair (S, ¢/(S, B)) is non-zero and (S, o/(S, B))¢S(¢"). Thus, there exists a
right ideal D of R, for which SDODDo/(S, B)DB, S#+D and (S, D)cB,. By
(viii) there exists a right ideal 7 of R, such that BCTCA, T doesnot D S
and (A, 7)¢B,. Thus there is a¢/ such that 7=7,DS, a contradiction. The
proposition is proved.

3. Supplementary radical closures.Definition 6. 7he pair (A, B)\I(R)
will be called irreducible, when the intersection H - Q. of all right
ideals Q. of R for which BCQ.CA, B+Q. is different from B, i. e.
when HOB, H+B. In this case, the pair (H, B) will be called the heart
of (A, B). The pair (A, B) will be called simple, when there are no right
ideals of R between B and A.

It is clear, that the heart of any irreducible pair is a simple pair.

It is obvious, that the following lemma holds:

Lemma 2. For every pair (A, B}\W(R), there exists a set {T,|a:J} of
right ideals of R, such that BCT.CA, B-NT., and (A, T,) (at]) are
irreducible pairs.
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Proposition 5. If the pair (A, B}WR) is irreducible with a heart
(H, B) and C is a right ideal of R, such that AONCDOBNC, ANC-+BNC,
then the pair (AN C, BNC) is irreducible with heart (HNC, BN C).

Proof. Let {Q, ats} be the set of all right ideals of R, which the con-
dition BN CCQ.CANC, BNC +Q. holds and let H,=[)Q.. We have
BN CcCH,CANC and our aim is to prove that BNCCH,, BNC+H, and
H,=HNC. For every at/ we have Q.+BDB, Q.+ B-=B and therefore
N(Q.+B)DB, N(Q.+B) B (acs) and N(Q.+B)DH. On the other hand,
it is not difficult to see that MN(Q.+B)=NQ.+B—H,;+B and therefore
H,+ BDH. 1t follows that (H,+B)NCDODHNCDODBNC or HHLOHNCDOBNC,
because if (H,--FB)NC=ANC-+H,=H. To conclude the proof it is enough
to show that #/NC-+BNC.

Suppose HNC=BNC. But as HDOB, H+B, there exists an element
with #2¢H and h¢B. However by H,CH,+BCANC+BCC+B it follows
that #¢C+ B, or h=c-+b, where c¢C and b:B. Then ¢—h—bcH+ B= H and
therefore ccHC=BNCCB, i. e. we get the contradiction k¢B. The pro-
position is proved.

Irreducible pairs are of great importance in the construction of the so-
called supplementary radical closures.

Definition 7. If o is a radical closure, then the radical closure
o* will be called supplementary to o, if

(a) For any pair (A, B)(\W(R), we have o(A, B)Ne*(A, B)—=B.

(b) For every radical closure »n for which n(A, B)No(A, B)— B we
have n- o*.

The radical closure o will be called a dual one if the radical closu-
res o* and o**- (0*)* exist and o-—o™*.

We shall construct a radical closure, which is supplementary to a he-
reditary radical closure. However let us previously prove

Lemma 3. If o is a hereditary rodical closure and (A, B) is a irre-
ducible pair with heart (H, B), then the pair (A, B) is o-semi-simple iff
the pair (H, B) is o-semi-simple.

Prooi. It is clear that if o(A4, B)=— B, then o(H, B) -~ B. Conversely
let o(/H, B) B.lf we suppose that o(A, B) + B, then o(A, B)DB,o(A, B) + B
and therefore o(A, B)DFH. But it follows that o(H, B)=0o(A, B)NH=H,
which is a contradiction.

Let o be a radical closure. Denote by “G(o) the class of all irreducible
pairs with a o -radical heart. Then the class

B={(ANC, BNC) (A, B)B(o), C— a right ideal of R}
consists of only irreducible pairs and satisfies (iii). Therefore G determines
an upper radical closure »’. If & is a radical closure, for which B(o)CJF (&),
then also BCS(&), or E<~of. This justifies the name upper radical closure
determined by the class of all irreducible pairs with a o = radical heart.

Definition 8. Let o be a radical closure. The pair (A, B) will be
called strongly o-semi-simple if for every right ideal C of R we have
oA+ C, B+C) B+C.

Theorem 1. If o is a hereditary radical closure, »' is an upper ra-
dical closure, determined by the class “G(o) of all irreducible pairs with a
o-radical heart and (A, B)\W(R), then the following conditions are equi-

valent :
(a) »'(A, B)— A.
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(b) For every right ideal D of R there exists a family of right ideals
{Q.!aet} of R, such that B+D=(\Q., the pairs (A+D, Q.) are irreduc-
ible ones and oA+D, Q. - Q..

(c) (A, B) is a strongly o-semi-simple pair.

(d) For ewvery right ideal D of R and every subpair (C, B+D) of
(A+D, B+D), there exists a family of right ideals {K. atl}, such that
C=NK.at)), (A+D, K, are irreducible pairs and oA+ D, K,)=K..

Proof. (a) —(b). Let D be a right ideal of R. By lemma 2 there
exists a family of right ideals {Q, «¢/} of R, such that B+D- Q. (at))
and (A+D, Q.) are irreducible pairs. Let (/,, Q.) be the heart of (A+D, Q.).
However by proposition 1 we have »(A+D, B4+D)=A+D and »(A+D,
Q.. Dn'(A+D, B+D)=A+D. Therefore (A+D, Q)¢S(n) and (A+D,
Q.)cB(p). This shows that o(H., Q. Q. and by lemma 3 : o(A+ D, Q.)= Q..

(b) — (c). Let D be a right ideal of R. Then B+D-—= Q. (at)),
o(A4-D, Q) — Q. and oA+D, B+D)=0A+D, NQ.IColA+D, Q. - Q.
for any at/. Therefore o(A+D, B+D)CNQ.=B+D and olA+D, B+D)
—B+D.

(¢) — (d). Let D be a.right ideal of R and (C, B+ D) be a subpair
of (A+D,B+D). Then ofA+D, C)=oA+D, B+D+C)=o(A+(D+C),
B+(D+C))=B+D+C—~C. On the other hand, by lemma 2 there exists
a family of right ideals {K, a¢/} of R, such that C— K, and (A+D, K.)
are irreducible pairs.It follows from A-+DDOK,DCDOB-+D that o(A+D, K.,)
—=o(A+(D+K,), B+(D+K,)=B+D+K,=K..

(d) > (a). Suppose »'(A, B)-+ B and denote D »'(A, B). Then A~ A+ D
tB+D-=D and y(A+D, B+D)=n(A,D)—n'(A, By~ D=B+D. We get
that (A+D, B+D)cS(n’) and therefore there exists a right ideal C of R,
such that (A+D,C)—(UNK, VNK), where (U, V)Tlo) and K is a right
ideal of R. Let (X, V) be a heart of the pair (U, V). Then o(X, V)= X and
(XNK, VNK) is a heart of (A+D, C). Also (XNK)+V=Xand (VNK)+V
=V, from which it follows that the pair (U, V)=(UNAK)+V,(VNK)+V)
is an irreducible one with heart (X, V). However V=C-+V and (C+V,
B+(D+V)) is a subpair of (A+(D+ V), B+(D+V)). Therefore there
exists a family of right ideals {K, atJ} of R, such that C+ V=K, the
pairs (A+D-+V, K,) are irreducible ones and o(A+D+V,K,)=K.. But
from the irreducibility of (U, V) = (A4+-D+V, C+V) it follows that for
some a¢/: K,=V and o(U, V)=V, which is a contradiction.

The theorem is proved.

Theorem 2. If o is a hereditary radical closure, then the upper
radical closure n', determined by the class of all irreducible pairs with a
o-radical heart, is supplementary to o.

Proof. Let (A, B){1I(R) and denote Q=o(A, B)N#'(A, B). By theorem
1 it follows from #'(n’(A, B), B)  »'(A, B) that o(»(A, B), B) -B and there-
fore Q- o(A, B)NQ=0(Q, B)YC”B, which shows that B Q.

Let now & be a radical closure, such that i(A, B)o(A, B)=B for any
pair (A, B)\I(R). Choose a pair (A, B)c“B(¢). Then (A, B) is an irreducible one
with heart (A, B) and o(H, B)-H. 1li we suppose that &(A,B)- B, then
§(A, B)DH and o(A, B)NEZ( A, B)DH which is not true. Therefore (A, B)= B,
(A, B)esS(£) and B(o)”H (). Finally we receive that & . The theorem is
proved.
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Theorem 3. If o is a hereditary radical closure, then its supple-
mentary radical closure o* is also a hereditary one.

Proof. Let (A, B)\(R) and ¢*(A, B)=A. Suppose a subpair (C, B) of
(A, B) exists, such that ¢*(C, B)==C. Then (C, o*(C, B))¢S(e*) and by theo-
rems 1 and 2 there exists a right ideal D of R, such that CODD0*(C, B),
C-+D and (C,D)=(UNK, VNK), where (U, V) is an irreducible pair with
a o-radical heart (X, V) and K is a right ideal of R. It follows from here
that the pair (C, D) is also an irreducible one with a heart (XNK, VNK).
But (XNK)+ V=X, (VNK)+ V=V and then the pair (U,, V)=(UNK)+V,
(VNK)+ V) is irreducible one with a heart (X, V). On the other hand,
0*(A, D)Do*(A, B)=A and therefore o(A+V,D+V)=D+V and o(C+V,
D+ V)=o(A+V, D+V)N(C+ V)= D+ V. Thus o(X, V)=V, which is a con-
tradiction. The theorem is proved.

Corollary 1. If o is a hereditary radical closure, then there exists
the radical closure ¢**—(0*)* and o= o™*.

Corollary 2. If o is a hereditary radical closure, then its supple-
mentary radical closure o* is a dual one.

Proof. It is clear that o*—=o***=(0**)*. Let now (A4, B)¢T(g). Then
(A, B) is an irreducible pair and if (H, B) is its heart, then o(H, B)=— H. How-
ever it follows from o-o** that o(H, B)=H, i. e. (A, B)¢B(0o**). Therefore
Blo)CB(o*™) S (0***) or 0**=o*, which shows finally that o*=—g***.

4. Supernilpotent and underidempotent radical closures. D efini-
tion 9. The pair (A, B) will be called a weakly regular one, if for every
element acA, there exists an element a'¢(a)", such that a—aa'¢B.

Definition 10. The pair (A, B) will be called a nilpotent pair if
there exists a positive integer n such that A" CB.

It is easy to prove the following

Proposition 6. If (A, B)\WR), then the following conditions are
equivalent :

(a) (A, B) is a weakly regular pair.

(b) For every acA:aca(a)+ B.

(c) For every atcA:ac |a)®+ B?.

(d) For every acA: a)C a)*+ B.

(e) For every right ideal T of R, suchthat TCA, it holds TCT?+ B.

Definition 11. The radical closure o will be called a supernilpo-
tent radical closure if it is hereditary and if every nilpotent pair is a o-
radical pair. The radical closure ¢ will be called an underidempotent ra-
dical closure if it is hereditary and if every g-radical pair is a weakly
regular pair.

We shall examine the relation between underidempotent and supernil-
potent radical closures.

Lemma 4. If ¢ is a supernilpotent radical closure and o(A, B)= B,
then for every right ideal C of R, for which CCA and C*CB, it holds
CcCB.

Proof. Suppose that C does not CB. Then COBNC, C+BNC and
C?*cBNC. Therefore o(C,BNC)=C. On the other bhand, it follows from

I We shall denote (a), the two-sided ideal of R, generated by a,i. e.
(@) laa+ary+ r.@a+s,as,| a€d, r,, ry, s, S€R).

2 We shall denote | a), the right ideal of R, generated by a, i. e.
| @)={aa+ar|a€d, r€R}.
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o(A, B)=B, that o(ANC,BNC)=0o(C, BNC)=BNC which is a contra-
diction.

Theorem 4. If o is a supernilpotent radical closure, then o* is a
dual underidempotent radical closure, ¢** is a dual supernilpotent radical
closure and ¢** is a minimal dual supernilpotent radical closure, such
that o< o**.

Proof. It follows by theorem 3 and corollary 2 that o* is a dual he-
reditary radical closure. Let now (A4, B){1I(R) and o*(A, B)=A. We shall
show, that (A4, B) is a weakly regular pair. Let 7 bea right ideal of R,
such that 7CA. Then o*(A+ 72 B+ T%)=0%(A, B+T7T?)=A and therefore
o(A, B+T2)=B+ T2 But 7T:CB+72? and it follows by lemma 4, that
TCB-+T? which shows that (A,B) is a weakly regular pair, or ¢* is an
underidempotent radical closure.

By corollary 2 we have o-¢*%, which shows that ¢** is a dual super-
nilpotent radical closure. Finally let » be a dual supernilpotent radical clo-
sure and o=_7n. Then ¢* ~»* and @**-—»n**=7. The theorem is proved.

5. Prime pairs. Let ADB be right ideals of R. We denote by (B:A)
the quotient (B:A)={xtR| AxCB)}. It is clear that (B:A) is a two-sided
ideal of R.

Definition 12. The non-zero pair (A, B)X\WR) will be called a
prime pair, if the following conditions hold :

(ix) AR does not CB.

(x) If x€A, 1 is a two-sided ideal of R and xICB then x¢B or
IC(B: A).

(xi) AN(B: A)CB.

The conditions (ix) and (x) show that A B is a prime R-module [2].
It is not difficult to see that the two-sided ideal P of R is a prime one if
and only if the pair (R, P) is a prime pair.

Proposition 7. If (A, B) is a prime pair and C is a right ideal
of R such that ANCDOBNC, ANC+ BNC, then the pair (ANC, BNC) is
a prime one.

Proof. Suppose (ANC)RCB(C. Since ANC =B\C then there is.
an element x¢ANC, such that x¢BNC. Then x¢A and x¢B. But xRC
(ANC)R(BNC)CB and by (x) we recieve that RC(B: A), i. e. ARCB,
a contradiction. Therefore the condition (ix) is true for the pair (ANC, BNC).

Let now x¢ANC, I be a two-sided ideal of R and x/CBNC. If
x§BNC, then x§B and x/CB, which shows that /C(B: A), i. e. AICB. It
follows that (ANC)/CBNC or IC(BNC:ANC). Condition (x) holds for
(ANC, BNO).

Finally let xcANCN(BNC:ANC). Then (ANC)xCBNC. Take an
element ycANC with BNC. Then ycA, v§B y(x)CBNCCB and (x)C
(B: A). Therefore x¢(B:A)NACB. We receive that x¢BNC and ANCN
(BNC: ANC)CBNC. The proposition is proved.

Corollary 3. (B:A)—(BNC:ANC)

Proof. If x¢(B:A), then AxCB and therefore (ANC)xC AxC B and
(AN C)xcCxC, i. e. x¢(BNC:ANC). Conversely, let x¢(BNC:ANC).
Then (x)(BNC:ANC). If y is an element for which ycANC, y§BNC,
then ycA, yeB and y(x)C(ANCYHx)CT(BNC)CTA. It follows that (x)C(8: A)
and x¢(B: A).
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Proposition8. If (A, B) is a primie pair, then there exists a right
ideal P of R, such that (R, P) is a prime pair and PN A=B.

Prooi. To examine the right ideal B+ (B:A). We have [B+(B:A)]N
(A/B)=2. If we suppose that x¢(B+(B8:A)(AN\DB) then x¢A, x¢B and
x=b,+b,, where b,cB, b.,6(B: A). Therefore b, x—b,¢(B:A)NACB and
x(B, a contradiction. It follows that the set 91T of all right ideals 7 of R
such that B-+(B: A7 and T()(ANB) © is not empty. By Zorn’s Lemma
there are maximal elements of 91U and let P be such an element. It is clear
that (1A B. Now we shall prove that (R, P) is a prime pair. Suppose
R:CP. Then ARZR*CF or ARCTP[A=B, a contradiction. Therefore
(R, P) fuliils (ix).

Let x¢(P:R). Then RxCP and AxCPNA B, i e x¢(B:ACP. It
follows that (~:R)CP. The condition (xi) is true for (R, P). If / is a two-
sided ideal of R and /P, then /C(P:R).

Finally let x¢R, / be two-sided ideal of R, x/CP and x¢P. Then
x) P+ P and there exists an element y¢AN B such that y¢ x)+P, i. e
y=p-tax+xr where piP, reR, ac®. However y/CPNA=B and IC
(B: A)CP. Therefore /C(P:R) and the condition (x) is true for the pair
(R, P). The proposition is proved.

6. Special radical closures. Definition 13. The class of pairs S
will be called a special class if the following conditions hold:

S. 1. If (A, B)ES, then (A, B) is a prime pair.

S.2. If (A, B):S and C is a right ideal of R, then (ANC, BNC)ES.

S.3. If (C, B) is a non-zero subpair of (A, B) and (C, B)¢S then there
exists a right ideal T of R, such that BC TC A, C does not < T and
(A, T)eS.

It follows from conditions S. 1., S. 2., S. 3. that if S is a special class
of pairs, then it determines an upper radical closure ¢°, which is a heredi-
tary one and for any pair (4, B):1(R) it holds o*(A, B)-- T, where (7.}
is the set of all right ideals of R such that BC7,.CA and (A4, T,)ES.

Definition 14. The radical closure o will be called a special ra-
dical closure if there exists a special class of pairs S such that ¢=¢'.

We shall discuss now some elementary properties of the special radical
closures.

Lemma 5. If Sbe aspecial class of pairs and (A, B)— an irredu-
cible pair, then o(A, B) - B iff (A, B)S.

Proof. It is obvious that if (A, B)S, then o%(A4, B) = B. Conversely,
let (A, B) B. Then B 7, where {7T,} is the set of all right tdeals of
R such that BC7T,CA and (A, 7,)¢S. However it follows from the irredu-
cibility of (A, B) that there exists some a such that T.= B. Therefore
(A, B)S.

Corollary 4. If (A B) is a simple pair, then o(A B)~-A or
(A, B)eS.

Lemma 6. // {o, atl}is a family of special radical closures, then
there exists a special radical closure o such that o o, for every atl and
if y is a radical closure for which n-—o, for every acl, then n- o.

Proof. Let o, be determined by a special class of pairs S, (at/). It
is clear that the class of pairs S=JS.(«£/) is a special one. et o be a
special radical closure determined by S. It follows by S.CScCo(o) that
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0o -0, for every a¢l. Let now 5 is a radical closure such that -0, for
every atl. Then S.CJ(n) for every a. Therefore SC () and n —o.

We shall denote with o=_.1p, such determined radical closure and
shall examine now the link between special and supernilpotent radical
closures.

Proposition 9. Ewvery special radical closure is a supernilpotent
one.
Proof. Let o be a special radical closure, determined by a special
class of pairs S. In order to prove that o is a supernilpotent radical clo-
sure it is enough to show that for every nilpotent pair (A, B) we have
o(A, B)—=A. Suppose the contrary. Then there is a non-zero nilpotent
pair (A, B) such that o(A, B)+A. But o(A, B)—- N7, where BCT,.CA and
(A, T,)S. Therefore there exists a right ideal 7 or R such that (A, 7) is a
non-zero nilpotent pair and (A, 7)¢S. Let n be a positive integer such that
A" T but Ar—' does not C 7. However (A4, 7) is a prime pair and therefore
from Ar—1. A A*CT it follows that A" 'CAN(7T: A)C7, a contradiction.

Proposition 10. If o is a supernilpotent radical closure and (A, B)
is an irreducible pair with a o-semi-simple heart, then (A, B) is a prime
pair.

Proof. We shall consider two cases:

(a) Let (A, B) be a simple pair. Then it follows from ¢(A, B) - B that
A2 does not B and AR does not C B (condition (ix)). Let now x¢A, / be a
two-sided ideal of R, x/CB and x¢B. On the other hand, (A4, B) is a simple
pair and therefore x)+B-A. We get from here that A/-—( x)+ B)ICB,
i. e. /C(B: A) (condition (x)). Finally let x¢(B:A)NA and suppose x¢B.
Then the pair (| x), B! x)) is a non-zero one and x)?)C(B[) x)), i. e.
o( | x), BN | x))=|x). However it follows from o(A, B)= B that o | x), B[ x))-
o(AN x), BN x))=B[ x), a contradiction. Therefore (A, B) is a prime pair.

(b) Let (A, B) be an irreducible pair with a heart (//, B). Then (H, B) is
a simple pair and o(H, B)- B. Therefore (/, B) is a prime pair. By propo-
sition 7 there exists a right ideal P or R such that (R, P) is a prime pair
and PN H - B. Then the pair (4, PN A) is a prime one. If PN ADB, PN A+ B,
then PDOPN ADH which is not true. Therefore the pair (4, B)— (4, PN A)
is a prime one.

We shall prove already the following main

Theorem 5. Every dual supernilpotent radical closure o is a dual
special radical closure.

Proof. Let us denote by B(o*) the class of all irreducible pairs with
a o*-radical heart and let B={(ANC, BNC) (A, B)cB(o*), C— a right ideal
of R

}Smce o is a dual radical closure then by theorem 2 we have ¢ -o’. We
shall show that B is a special class of pairs which shall prove the
theorem. It is clear that all pairs of G are irreducible. Let {4, B):G and
(H, B) be the heart of (A, B). Theng(/, B)— B and by proposition 10 (A4, B)
is a prim2 pair (condition S. 1.). It is obvious that the condition S. 2. is also
true for <G.

Finally let (C, B) be a non-zero subpair of (A4, B) and (C, B)¢G. Then
(C, B) is an irreducible pair and let (/7, B) be its heart. On the other hand,
(C, B)=(UNK, VNK), where (U, V)cB(o*) and K is a right ideal of R. De-
note by (X, V) the heart of (U, V). Then (H, B) - (UNK, VNK). Let P be
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a right ideal of R which is maximal with respect to the conditions: POV
+(V:0), PNU - V. (It exists by proposition 7.) Then (R, P) is a prime pair
and it is clear that it is anirreducible one with heart (X+ P, P). If we sup-
pose that P-o*(X+P, P) then o*((X+P)NX, PNX)-o*%X, V)=V, a con-
tradiction. We get from here that (o X+ P, P)= X+ P, (R, P)¢B(o*) and
(A, PNA)=(RNA, PN A):B. Further more BCPNACA and C does not C
PN A. Therefore ‘G has the condition s. 3. and B is a special class of pairs.
The theorem is proved.

Combining theorem 5 with lemma 6 we have

Theorem 6. /f o is a supernilpotent radical closure, then there
exists a svecial radical closure o', such that o-—=o' and for every special
radical closure n, for which o<=n holds o' —<n.

Proof. Let {0,)a-/} be the set of all special radical closures such that
0=0,. Since p=0** and by theorem 5 o** is a special radical closure, then
this set is not empty. It is obvious that the special radical closure o’ = Ao,
satisfies the conditions of theorem. The theorem is proved.
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