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THE MULTIPLIER EXTENSIONS OF ADMISSIBLE VECTOR
MODULES AND THE MIKUSINSKI-TYPE CONVERGENCES

ARPAD SZAZ

This paper is devoted primarily to initiating an abstract theory for the convolution calculus
For this, the concept of quotient algebras and the type I convergence of Mikusinski are gene-
ralized. Thus, a complete algebraic foundation and some preliminary considerations to a topolo-
gical foundation of an abstract convolution calculus are obtained.

1. The multiplier extensions of admissible vector modules.

Definition 1.1. Suppose that

(I)y £ is a commutative algebra over K (=R or C);

(Il) B is a wvector space over K and an #-module such that a(f=q)
~(af)xq [+ (ag) for all acK, f¢B and @ #;

(Il) 4 is a subspace and a submodule of B such that for every 0=-f ¢ B
there exists ¢ ¢ # such that f=q@-=-0.

Remark 1.2. Since 4 is commutative, we may use the usual convention
that ¢ «f—f=q¢ if ¢4 and f¢B.

We shall call such modules admissible vector modules. Examples for ad-
missible convolution vector modules can be found in [10, 13, 14, 15, 3, 8].

Definition 1.3. Dc 4 is said to be a divisor of zero in B if there exists
0%f € B such that f*@=0 for all g¢D.

If € and {@} is a divisor of zero in B, then we simply say that ¢
is a divisor of zero in B.

Definition 1.4. Let 99N (A, B) be the set of all functions

such that Dg is not a divisor of zero in B and Flp)=y=—q=Fly) for all ¢,
w € Dp. Moreover, for F¢ 9L let

F={(p,f) € AXB: o€ Dp:f+0=g¢ = Flo)).
Lemma 1.5. Let F¢IU. Then
(i) FeIn,;
(i) Dg is an ideal in #;
(iii) F is a vector space and a module homomorphism of Dg into .
Proof. If (¢, fy), (¢, fo) €F, then fixo=¢=F(o) and fo*o-— @ = F(o), i. e.

(fi—/f))*o-0

for all o¢ Dp Hence, since D, is not a divisor of zero in @, it follows that
f1- f s Consequently, F is a ‘function.
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If ¢, w¢ DF’ then f‘:(q*) o=@ = F(o) and F(tp)* o=y = F(o), and hence
(F(@) sy —g=F(y)sa=0

for all o¢ Dp This implies that F(¢)=y=¢=F(y). Now, since Drpc D, it is
clear that (i) holds.

Similar calculations can be used to prove (ii) and (iii). For example, if
@€ Dg and y¢st, then we have ‘

(Flg)=y) =6~ (¢ =y) = F(0)
for all o ¢ D, which implies that (¢ =y, Flg)=y)€F, i. e. ¢ =y ¢ Dy and F(g =)

:?‘((p)*w. B
Definition 1.6. Let M= VX, B)—={F: Fe M} and

N=N(A, B)={D: DM, D(Ds)C 4}

Moreover, for F, G¢Wand ®¢N, let FO G=F+G and F+=® = Fod.

Theorem 1.7. Nt is a commutative ring with unity, and Y is a uni-
tial N-module.

Proof. In the proof we shall often use the following obvious facts:

(a) If D,, Dyc # are not divisors of zero in B, then D, =D, is not a divi-
sor of zero in B. Moreover, if in addition D;=Ac D, and D,=#&c D,, then
D,N D, is also not a divisor of zero in &.

(b) If @¢N, then &~ '(#) is an ideal in 4 which is not a divisor of
zero in B.

(c) If F,GeM, DcDenDg is not a divisor of zero in B and Flg)=G(g)
for all ¢ ¢ D, then F=CG.

The proof of the theorem may be carried out in three steps:

The first step is to prove that if F,Ge¢M and @, ¥¢ N, then Fa G,

FxdeM and @@ W, d=V ¢ ). For example, we prove that F=®¢ M. Clearly,
we have (Fo @) (¢ #*y)=F (®(p=vy))=F (9= D(y))=F(¢)* P (y)forall ¢ Dp and
y € @—1(#). Hence, it follows that Dp+ @ (#)CDroe. Consequently, Droq is
not a divisor of zero in®. Moreover, we have (Fo®)(¢)=v = F(D(p))=y—FP
(¢) * @)= Flg * D(y)) = ¢ = F(P)y)) =q * (Fo D) (y) for all ¢, we Drogp. Thus Fod
€I and so F«Pd=Fo®¢M.
. The second step is to prove the required commutative, associative and
distributive laws for @ and = For example, we prove that if 7¢O and @, ¢,
then Fs(d® W)—=F=®® F+ V. Clearly we have (F = (P ® ¥))(¢)=F(P & P)(9))
— F(®D(q)+ P()) = F(®P () + F(V(9)) =(F+ @) (¢) +(F+ V) () =(Fs D F+ V) ()
for all @ € Dex (P (&) N P'()). Hence, since Dpx* (P~ (£) N P—'(#)) is not a
divisor of zero in B, it follows that Fx(P® V)=F=PDF= V.

The third step is to prove the existence of certain special elements in 9.
Let 0 and 1 be the functions defined on # by O(¢)—0 and 1(¢) = ¢. Then
0,1¢N and FOO=F+0=F=F, FO( F=F+4+(—F)=0|D=0, Fsx1=Fol =
F=F, for all F¢M.

Definition 1.8. For a¢K, let F, be the function defined on # by

F, (p)=ap.
Proposition 1.9. The mapping défined on K by a—F, is a field

isomorphism of K into .
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Proof. Left to the reader.

Definition 1.10. For a¢K identify a with F, by writing a=F..

Remark 1.11. After this embedding, with the convention that @« F=F=®
it @¢) and FeN, M becomes an admissible unitial 9i-vector module.

Definition 1.12. For f¢B let F; be the function defined on # by Fy(p)
:f*o“.

Proposition 1.13. The mapping defined on B by f— F; is a vector
space isomorphism of B into W such that Fpo—F/#Fs for all. f € B
and @e A.

Proof. Left to the reader.

Definition 1.14. For f¢ B, identify f with F; by writing f=Fy.

Remark 1.15. After this embedding 9 may also be consicered as an
admissible s-vector module.

Proposition 1.16. Let F¢ and ¢ ¢ A. Then F+q@¢B if and only if
@ € Dp. Moreover, if @€ Dy, then F+q—=F(g).

Proof. Suppose first that ¢ € Dr Then

(F= @) (y)=(F = Fy) (w)=F(Foly)) = Flo* w)=Flg) * w=Fr,(y)
for all y ¢ 4. This implies that Fx@—=FFq)=F(p) ¢ B.

Suppose now that F+¢¢ B. Then (Fxq@)* o=@ = (F=0)=¢=F(o) for all 6 ¢Dp
Hence it follows that (¢, F=@)¢ F=F and so ¢¢ Dg.

Theorem 1.17. Let ®¢ . Then the following conditions are equivalent

(i) @ is invertible in N ;

(i) @ is not a divisor of zero in Y ;

(iily @ (Dy)N A is not a divisor of zero in B.

Proof. It is clear that (i) implies (ii). Now suppose that (ii) holds and
f€®B such that f=®d(o)=0 for all 6¢ &' (#). Then we have

(Fp= @) (0)=F(D(0)) = f = (o) =0

for all o ¢ @ '(4). Since @—!(#) is not a divisor of zero in B, this implies tha
F;+ ®=0. Hence by (ii) it follows that F,=0, i. e, f=0.

Finally suppose that (iii) holds. If @ (p)=®(y), then a simple calculationt
shows that (p —y)* ®(c)—0 for all o¢ Dy. Hence by (iii) it follows that ¢=1.
Consequently @& is injective, Moreover, since

D) sy =D (@) * (P~ ()~ PP (@) * P! (p)=¢=* P (y)
for all ¢, we D(Dyp) N A, we have @' BH(Dyp)N A€ N. Thus

(@# @' [ D(Da) N #) (@)= PP~ () =9~ 1(9)

for all ¢ ¢ D(Dsp)N #A, whence @ =D~ |D(Dgy) N A= 1.

Remark 1.18. In several important special cases there are elements in s
which are not divisors of zero in . In these cases we prefer to use the follow-
ing notation.

Definition 1.19. If ¢ ¢ £ is not a divisor of zero in B and f¢ B then let
flo- (@, )} o

Remark 1.20. Observe that, if /¢ and @ ¢ Dy such that ¢ is not a
divisor of zero in B, then F—=F(¢)/q¢.

Theorem 1.21. Suppose that ¢,y ¢ & are not divisors of zero in B and
let f,g¢B and y¢ &. Then flo=g/y iff f+y—@=g and moreover
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f g:f*v'-w:f_ and f*l__f*z.

s Dy Py » v @xv

Proof. If flg=g/y, then (¢, f)¢flp=8w={(v,g)} and so fry=q=g.
Conversely, if f=y—=¢=g, then

%(tr*u'):§(¢)*w:f*w=w*g=¢*% (w)=f—,(¢*w).

Hence, since ¢ =y is not a divisor of zero in @B, it follows that f/o=g/y.
Finally the equalities

(5@%)(w*w)=é(¢*w)+%(¢*w)=%(¢)*w+¢*%(w)

=fry+o *g:f_% (9 *v)
and
(£ B)wen=L(2@ew)=L(o+2W) =L@ 0=L@ xS o2 i)

imply the corresponding rules for ® and =.

Remark 1.22. We shall call the 9}-module 9t the multiplier extension of
the admissible #-vector module $.

The elements of )t may be termed as quotient multipliers. If the elements
of B are functions and = is a certain kind of convolutions, then the elements
of M will also be called generalized functions.

2. The Mikusinski-type convergences.

Definition 2.1. Suppose that

(IV) L 4-lim is an L-convergence on #A such that the algebra operations

are sequentially continuous ;
(V) Lg-lim is an L-convergence on B such that the vector space and

the module operations are sequentially continuous ;

(V) Ly-lim is  stronger than the L-convergence induced on # by

Remark 2.2. A relation L-imc X¥X X is called an L-convergence on
X (5] if

(1) x¢L-limyse x for all x€ X,

(2) x¢€L-lim, . x, implies that x¢ L-lim,.. xx for any subsequence
(xe )y of (X

(3) x, X' ¢ L-lim,,.. x, implies that x = x’. By (3), L-lim is a function
thus we may write x=_L—lim,,. x, instead of x ¢ L-lim,_e X, .

Definition 23. Let Ly-lim cN® X N be such that for (Pn);_, € N"

and ®¢N, P Lyplim, Py iff

to € ()2, () 1) L glim B, ()= )

n=

is not a divisor of zero in B.
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Let Lop-limc M¥N XM be such that for (Fn):_ ¢ MY and F¢N,
Fe¢ Loy-lim,.,.. Fn iff

0 € N Dr, N Dp: Lgelimy o Fy ()= F (9}

is not a divisor of zero in B.
Theorem 24. (i) Ly-lim is an L-convergence on N such that the

ring operations are sequentially continuous.
(i) Loy-lim is an L-convergence on W such that the module operations

are sequentially continuous.

(iify The usual convergence on K and L -lim are stronger than the
L-convergences induced by Lgy-lim on K and #, respectively. Moreover
LEB-lim and Lyy-lim are stronger than the L-convergences induced by

Lgy-lim on & and ), respectively.
Proof. It is clear that Ly-lim and Lgy-lim satisfy (1) and (2). More-

over, a simple calculation shows that (iii) holds.
If F(")GL‘)Jz'limn—ooo Fn, i- 1, 2, then

D,-_'—_{q‘é OlDF"n DFILQ'“m Fo(p)- 'F(i)(‘P)}

n—oo

is not a divisor of zero in @. Moreover, it is clear that D, is an ideal in #.
Thus D,NnD, is also not a divisor of zero in $B. Furthermore we have
Fuy(9) = Fe () for all @ ¢ DyND, This implies that Fu)=Fp). Consequently
Loy-lim is a function. Hence by (iii) it is clear that Lyp-lim is also a function.

Finally we must show the sequential continuity of the corresponding ope-
rations. For example, we show that the multiplication =: XN — M is sequen-
tially continuous. For this suppose that Loy-lim, ,.F,=F and Lgp.lim, @ = P-

Then
D~{y € 0 Dr, N Dy: Lgrlim Fo(y) - Flo)
and
E-—{p¢ nfj l(p”—l (A)NDI(A): LA-LI'E::P» (@)= P (@)}

are not divisors of zero in @. Moreover by (v) we have
L tim (Fos @) (9 # )~ Lggrlin Fo (9) » D () = F (g) = B(y) = (F » ®) (9 + v)

n—soo

for all @€ D and y¢ E. Hence since D=*E is not a divisor of zero in @ it
follows that

Lon-lim Fpe @, F » &,
H”

Remark 2.5. We shall call the L-convergences Ly-lim and Lgy-lim
the Mikusinski-type convergences on )t and ), respectively, since they are natural
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generalizations of the type I convergence of Mikusinski which is commonly
used in the convolution calculus [10].

The type I convergence is not topological [1]. However, in case of perio-
dic convolution the Mikusiniski-type convergence is metrizable (3,16, 17].

Despite of the fact that the Mikusinski-type convergences in general are
not topological, it seems reasonable to consider 9t and M topologized by
Lyg-lim and Lgy-lim, respectively [1, 2, 5]. (If L-lim is an L-convergence on
X, then Gc X is called open if x¢G and x=L-lim,.. x, imply that x,¢G
for all sufficiently large n.)
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