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LINEARLY VARYING BANACH-VALUED MEASURES
ELIAS FLYTZANIS

We generalize the notion of a positive measure being preserved by a transformation. We
allow the measure to take values in a Banach space and to vary linearly under transformations
of the measurable space. For the main results we assume that the Banach space has the R—N
property and the measure is of bounded variation. For the cases considered we show that
there exists an equivalent finite positive invariant measure and we identify the resulting R—N
derivatives.

1. We consider a o-algebra X' of subsets of a set S, a separable complex
Banach space B and a set function M:3X — B which is a B-measure in the
sense that X7'M(E,) - M(E) for every sequence of pairwise disjoint sets
{E;:i=1,2,3,...{cX with F=UE,. A set EcY is said to bz M-null if M(F)
is the zero vector for every FCE, F¢X. We consider also point transforma-
tions 2:S — § defined M — a. e, which are measurable having a measurable
inverse and are nonsingular in the sense that £ is M-null iff 2-Y(E) is M-null.
Generalizing the notion of positive finite invariant measures (p. f. i. m.) and
also that of vector-valued eigenfunctions of measure preserving transformations
[2] we examine solutions M, A, 7, to the equation

(1) Mh1=TM,

where M, h, are as above, 7:B - B is a bounded linear operator and MA—!
is defined by Mh—'(E)- M(h'(E)). In the rest of this section we solve equa-
tion (1) in finite dimmensions and in 2 we extend this solution to some cases
in infinite dimmensions. The results obtained in the sequel parallel those ob-
tained in [2]. The present setting however is more general and also it seems
more natural. Certainly the generalization of equation (1) to locally convex
spaces would present special interest since the particular case of operator va-
lued measures can be used in the study of symmetry properties of the spec-
tral decomposition of operators.

First we give some preliminary notions. If M, 2 are as above we consi-
der the spaces L.(M) of complex measurable functions M-ess. bd. and ca(M)
of countably additive positive finite measures absolutely continuous with res-
pect to M in the sense that if £ is M-null then w(E)- 0 for u¢ ca(M). We
note that a positive finite measure (p.f. m.) m is said to be equivalent to M
if sup{|| M(F) :FcE, —0 iff m(E) >0 where E, i 1,2, ..., is a sequ-
ence in 3. The point transformation # induces in L. (M) an invertible isometry
V by Vf=f(h(.) whose dual V*:ca(M) - ca(M) is given by V*u=uh-'.
The eigenvalues of 4 are defined as the eigenvalues of V. If now ¢ is an ei-
genvalue of V* then clearly ¢ 1 and the eigenvalue equation uh'=cu
implies :
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(i) The total variation u« is a p.f. m. invariant under 4.

(i) du=f(.)d ! u' where feL..(x) and cf(h(.))=f(.), i.e. f(R='(.))=cf(.).

In fact the remark above gives the solutions of equation (1) if B is one-
dimmensional and generalizes directly to finite dimmensions as follows.

Theorem 1. The solutions M, h, T of (1) for which M has finite di-
mensional range are of the form dM= X( .)dm, where

(i) m is a p.f. m. invariant under h;

(ii) X(.)eLo(m) satisfies the equation X(h~'(.))=TX(.). In particular
we have X(.)=X%f(.)x;, where Tx,=c;x; f{h7'(.))=c;f.) with fitL(m),
|C,':=l.

Proof. Assuming for convenience that B is spanned by the range of B
it follows from the invertibility of # and the finite dimmesionality of B that
T is invertible. From the boundedness of the range of B [1] it follows that
vectors in the range have bounded orbits under both 7, 7—! and then
from finite dimmensionality that 7, 7—' are totally bounded in the sense that
the norms {| 7"':n=0, +1,...} are uniformly bounded. Renorming, if neces-
sary, the space by the equivalent norm x '=sup{||7"x|:7=0, =1,...} we
can assume w.l.o.g. that 7 is an isometry. In finite dimmensions the total
variation |M' is a p.f. m. and it is invariant under % by equation (1) and by
T being an isometry. If we write dM=X(.)d| M| we clearly have X(2~!(.))=
TX(.). Also T being an isometry in finite dimmensions it has a complete set
of (independent) eigenvectors {x;:i=1, 2,..., n} and writing X(.)=3fi(.)x;
we have clearly f;(2'(.))=cfi.) if Tx;=cx;.

If 2 is not assumed invertible then the above theorem still holds if M is
assumed to have the property that its restriction to the k-invariant sub-o-al-
gebra 3, of X has the same span as M itself, where 3= N>=_k—(2). We note
that for >, we have X,=A"'(2))=#A(Z,) and the function X{(.) occuring in
the theorem is 3,-measurable so that X{2—!(.)) is well defined.

2. That Theorem 1 does not hold in infinite dimmensions can be seen by
the following example.

Example. (5, 2, m) is a positive finite measure space and £2:S — S in
invertible m-nonsingular transformation for which the R—N derivative dmh—!/dm
is ess. bd. so that the operator 7:L,(m)— L,(m) defined by Tf(.)=f(h(.))
is a bounded linear operator. Also we define the set function M:X — L,(m)
by M(E)=yx..), where yxz is the characteristic function of E¢3. M is a B-
valued measure if 1=o0<co and satisfies (1) by M(A—'E) = yh 'E = Tyr—= TM(E).
In particular if m does not have an equivalent p.f. m. invariant under % then
neither does M. We note, however, that if 7 is an isometry, then m is inva-
riant under % and is such a measure. In fact we have the following result:

Theorem 2. M, h, T, is a solution of (1) and T is an isometry. Then
there exists a p.f. m. equivalent to M and invariant under h.

Proof. By [1] there exists a p.f. m. m equivalent to M. In order to show
that there exists one such, invariant under % it suffices to show that lim inf
(mh—(E))- 0 implies m(E)=0. Indeed assume lim (mh—*(E))=0 for some se-
quence % > +oo. If m(E)>>0 then by the equivalence m~M we have that E
is not a M-null set and there exists Fc E for which M(F) is not the zero
vector. We consider now the sequence h—*F, By assumption we have m(h—*F) —0
and the equivalence m~M implies M(h—*F)~ TM(F) — 0 which is a contra-
diction because 7 is an isometry.
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[t is seen from the proof that the theorem holds more generally if we
assume that the zero vector is not in the closure of any orbit of 7" which in
the case of the example is in fact a sufficient and necessary condition for the
existence of an equivalent invariant measure.

Considering again the example above but with m assumed invariant we
note that part (ii) of the theorem is not generally valid in infinite dimmen-
sions even with 7 assumed to be an isometry. Noting also that for p -1 the
space B--Ly(m) does not have the R—N property [5] while for 1<p<oo the
measure M:Y -~ L,(m) is not of bounded variation it is the case that Theo-
rem 1 holds if B is assumed to have the R—N property, M to be of bound-
ed variation and T:B B to be an isometry. Using the techniques of (3]
we will prove the theorem for a larger class of operators T.

Theorem 3. B is a separable complex Banach space having the R—N
property and 1:B > B has the property that for collection {x*}c B* dense
in the B-topology of B* the orbits under T* are bounded. Then the solution
M, h, T of (1) for which M has bounded variation is of the form

am - X( .)dm,

where

(i) m is a p. f. m. equivalent to M and invariant under h;

(ii) X:S—~ B is m-integrable and satisfies X(h—'(.))= TX(.).

Remark. Part (ii) follows directly from (i) and equation (1), so we need
prove only (i). We note also that the equation in (ii) has been solved in (3]
without the assumption of R—N property. In particular it implies that 7, 7™
have the same eigenvalues, all of norm I, they are also eigenvalues of 4 and
the eigenvectors span B in the norm topology and B* in the B-topology.
Also we have that X{(.) is measurable with respect to the sub-o-algebra of 2
generated by the eigenfunctions of 4. In particular, if we denote by Le_(m)
the subspace of L.(m) spanned by the eigenfunctions of %, we have that X is
uniquely determined by the map K:L‘(m) > B defined by Kf =fam.

Proof (i, Denoting by M| the total variation of M we have that the¢
operator K:L..(M) - B defined by Kf= [fdM is a bounded linear operator
and also compact by [4], assuming the R—N property. We also have the ad-
joint operator K*:B* » ca(M)c L' (M) defined by K*x* x*Mcca(M). K* is
c ompact by the compactness of K and also injective if we assume, as we do
w.l. 0. g., that B is spanned by the range of M. We have clearly KT* V*K*,
where V* is the invertible isometry induced in ca (M) by V*u- uh~'. Let now
(x*! be a collection spanning B* in the B-topology and whose elements have
bounded orbits under 7* Then u - K*x*cca(M) has conditionally compact or-
bit in the norm topology under the isometry V* by the compactness of K*
and the equation above. It follows that the subspace spanned by the orbit of
« is also spanned by the eigenvectors of V*. Since {x*| spans B* in the B
topology it follows that their image under K* span the range of K* which by
above is also spanned by a countable collection {,:{z} of eigenvectors of V*.

We have uh ' ¢ and from 1 it follows that the total variation « is a
1 i i
p. f. m. invariant under A. Setting m Siw /2 u f, we have that m also has
i ]

this property. Next we show that m(E)=0, iff E is M-null, which implies the
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equivalence m ~M under the assumption of bounded variation for M. Indeed,
it m(E)—=0 then lu (E) =0 which implies « (F)=0 for each Fc E and all /te{u}

Since {u1 spans the range of K¥, it follows that for each FCE we have

x*(M(F))' 0 for all x* B* and hence M(F)=0. This implies that E is an
M-null set. The other direction follows from the fact that each w¢ca(M).
i

From the proof above we also have:

Corollary. If B, Mare as in Theorem 3, h does not have any eigen-
values different from 1 and M, h, T give a solution of (1) then either T
is the identity or M has an infinite dimmensional range and all the orbits
of T* are unbounded.
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