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DISTANCE CONDITIONS FOR THE ZEROS
OF PEAKING COSINE POLYNOMIALS

G. BLEIMANN, E. L. STARK

The purpose of this paper is to establish estimates for
2,1 =min {xg (1)>0; £,(xo(n)=0}, where £,=1+23}_, 0, , cos kx,

by applying certain inequalities (of Bernstein-type) for the C-norms of trigonometric polyno-
mials and their derivatives.

1. Introduction. In the constructive theory of (2a-periodic) functions,
approximation by means of singular convolution integrals plays a fundamental
role; See e. g [5]. In this connection, the description of the underlying
kernels (more precisely: approximate identities), particularly a characterization
of their graphical behaviour, is of importance. One aspect, the distribution of
zeros, leads to the investigation of distance conditions for the first zero of
peaking cosine polynomials; compare e. g. [6, p. 95], [17, p. 38, 43].

One peculiarity of these approximate identities (for a complete definition
see [5, p. 31] but also [4]) which are represented by a normalized, even, trigo-
nometric polynomal of degree n, i. e.

(1.1) tn (x) .I*Q}Jlgkncoskx, neN,
e 3

is the peaking property, in particular at the origin (mod 2x), i. e. £, (0)>#,(x)
for all x¢(—am, 2] such that (with the C-norm)

(1.2) t, o —max{|fy(x)|; —a<x=a}—1,(0)>0.
With respect to the fine structure of these (even) kernels some informa-

tion on the distance of the first (positive) zero from the origin (i. e. the peak-
ing point), thus of

(1.3) Zp = min{xy(n) >0; £, (xe(n))=0)
is indeed of interest.
The purpose of this paper is to establish estimates for the 2/s by applying

certain inequalities (of Bernstein-type) for the C-norms of trigonometric poly-

nomials and their derivatives. For certain sharper estimates (concerning con-
stants), a theorem of M. Riesz and an adequate geometric construction, res-
pectively, are used.

It should be noticed that the procedures described below may also be ap-
plied with obvious modifications in order to derive distance conditions for the
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zeros of cosine polynomials which are located in the neighbourhood of any
positive (relative) maximum of the polynomial.

2. A review of some Bernstein-type inequalities. Let n¢N and a,, a,
b,¢R, 1-_k-—n; then the following classes of trigonometric polynomials are
needed :

Th:={ti(x)=a,+ X (a,cos kx+ b, sin kx)},
k=1

Tr;‘::{tné Ths t,.(x)-,\,O}, NT: : :{trxe T;; a,=1j.

For these polynomials the following general theorems have far-reaching conse-
quences.
Theorem (S. N. Bernstein [1]). If ¢{,¢ T, then

(2.1) | 80 | <n" t,|, reN.

In view of the extremal function #,(x)--sinnx, the constant 1 on the right-
band side of (2.1) is optimal. For different proofs and further literature see
e. g. [15, footnote p. 356|, [2], [11, p. 39], (7, p. 91, 228], [14, p. 90, 287,
Ex. 82].

Theorem (L.Fejér [10])./f t,¢ NT ,, then
(2.2) tyl=n+1.

Again the inequality is sharp; this is due to Fejér’s kernel (which indeed
is a peaking kernel), i. e.

1 i 1)x/2) \2 3 k
Falx) - (Sm«“' ’x—)) 1423 (l—nﬂ)coskx -0, Fro(0)=n-+1;

n+1 " sin(x/2) P
see also [14, p. 83, Ex. 50], [5, p. 84, Probl. 1.6.4].
Theorem (M. Riesz [15]). If t,¢ T, and h<<=z/n, then
(2.3) [t |- nit,(x+h)—t,(x—h)||/2sinnh.

(In the original paper [15, p. 365] inequality (2.3) appears for 2 ==/2n only;
compare the literature following inequality (2.6).)

Corollary. If t,e T, then
(2.4) 8D = [ La]]/2, reN.
Proof. Setting A=x/2n in (2.3) yields
Lt | n| tx+n/2n)—t,(x—n/2n) /2--n [ty (x+7/2n)[|/2- n| t,|/2

in view of the positivity. Again there exists an extremal function, namely

(2.5) t,(x)-—= ; 4 ,l,cos nx--cos?(nx/2) 0. ]

The improvement of the constant in the Bernstein inequality (2.1) to the
desirable factor 27, as a consequence of the positivity of ¢,¢ 7,, is limited
to the first derivative (r - 1), as also follows by (2.5).

For the sake of completeness the general M. Riesz -—S. N. Bernstein inequa-
lity has to be added. It is given by the following
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Theorem. Let t,€ T, If Ajta(x)=30%oo(— 1) (&)L, (x—[r—2k] k), re¢N and
h<a/n or h- =/2n, respectively, then

(2.6) £ - (n/2sinnh)"| A7t - n" t,],

respectively; the inequalities being sharp.

For proofs, extremal functions, and the literature we refer, in particular,
to [19, p. 213 (17), p. 214 (18)]; moreover, see also [12, p. 259 (3. 5. 28)] and
the literature cited there as well as [3; 13; 18]. It should be noticed that —
strange to say — the name of M. Riesz is not mentioned in any of these
sources!

Theorem (E. v. Egervary — O. Szdsz [9)). If t,¢ NT,, then
. ’ /n+1(n+2\_n )
(27) =) (3= e ]/

For an alternative proof (of this extraordinary, yet rather unnoticed in-
equality) [16, p. 278]; inequality (2.7) is again sharp in view of an extremal
function [9, p. 652]. It is obviously better than the inequality ' £ [<n(n+1)/2

which follows from (2.4), r- 1, together with (2.2); however (2.4) only assumes
ta€T,.

3. Distance conditions via Bernstein-type inequalities. The inequalities
of Sec. 2 now easily provide estimates for the first zero z, of cosine polyno-
mials as defined by (1.3). Here, 17, denotes the class of all polynomials satisfy-
ing (1.1) and (1.2); I, is used if #,(x)=0.

Proposition. (i) If t,€1l,, there holds the global distance condition
(3.1) 2,.>\2/n;

(ii) if t,¢ 11, , then globally
(3.2) 2,>2/n;

(iii) if t,€ I1,, one has the individual estimate
2V3 £, (0) V n

(3.3) =0yt Y av2
Proof. (i) For 2z, of (1.3) a 3-term Taylor formula for x- 0 gives
0=tn(2,) =1, (0)+2, £, (0) + 222 (x,)/2, 0<Xo<2Zp.
So in view of (1.2) and £,(0)=0,
(3.4) L, (xo)=—2||2,|/22.
By Bernstein’s inequality (21) for r—2 there results |’ (x,) —2 ta/2<! )
- n?| t,|, yielding (3.1). )
(ii)y The mean value theorem when applied to ¢, reads

(3.5) £(%0) — (tu2) = t(O)/(2a—0) = —[ £, /2, 0<Xg< 2.

The M. Riesz inequality (2.4) tor r 1 then gives |f/(x,) = t,|/z,- e,

=n|t, |2, proving (3.2). (For these two proofs £, needs not be normalized!)
(iif) From (3.5) it is inferred that ¢,(x,)  —£,(0)/z,, 0<x,< z,; applying

the Egervary-Szdsz inequality (2.7) gives
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tA0)/zn = | £, | =n(n+1) (n+2)/3n)12/2

from which there follows (3.3).

Remark. In case (i) the mean value theorem would give merely 2, 1/n;
concerning case (ii), a 3-term Taylor formula produces the same result; as to
case (iii), the Taylor formula would result in an estimate worse than (3.3)!

4. Distance conditions via a theorem of M. Riesz. An improvement of
the constants which appear in (3.1), (3.2) will be provided by the following

“curve fitting”
Theorem (M. Riesz [15,p. 363 f|). Let t,¢ T, satisfy | t, - Mtogether

with t, (&) M. If tix) -+ Mcosn(x—¢g), then for all x¢ (5 a/n, ¢+a/n), x-§,
it holds that
(4.1) ta(x)>Mcos n(x—&).
An almost immediate consequence is
Proposition. (i) /f t,¢ 1], then in general
(4.2) Za=7/2n;
(ii) if t,€ IT,, then the constant is doubled according to

(4.3) 2, 7/ n.

Proof. (i) t,¢I1I, implies M—|t, —£,(0)>0 and & O in (4.1), i. e.
tn(x)>1,(0)cos nx, —m/n<_x<a/n; moreover, the right-hand side is positive
(merely) for .’CG(—jn 2n, n/2n). This proves (4.2).

(ii) Let ¢,¢11,, thus M+: t, =t,(0)>0, &-0. Define
(4.4) gn(x): =ty(x)—M+/2,
then ¢,¢ 7, and |gn — ga(0)—M+/2>0. Now, (4.1) when applied to (4.4) yields
tu(x)—Mt/2>(MT 2) cosnx(—a/n,z/n) or, equivalently, £,(x)>(M*/2)(1 + cos nx),
(—=n/n, x/n) where the right-hand side is positive for all x as indicated; this

proves (4.3).
5. Distance conditions via an osculating parabola. Whereas the Bern-

stein-type inequalities give at once rough estimates for the smallest zero z, of
t,cll, or II,, respectively, which, in turn, are partly improved by Proposition
(4.2), (4.3), another more refined geometrical approach will bring forth approxi-
mations having constants that are better in some cases, too.

To this end, the function

(5.1) Pa(X): ; 2/(0)x2 + 1, (0)

involving £,(x) of (1.1) and satisfying p{(0)—¢/(0), i 1, 2,3, is introduced.
Thus (5.1) is the osculating parabola to 7, i. e, both p, and 7, exhibit the
same curvature at the origin. Then, considering the positive zero of (5.1), it
is read off that p,(y.) 0= y, \/——2t,.(0)/t',;(0). This enables one to establish

the following
Proposition. For t,¢lIl, satisfying the additional condition on -0,

1 k<n, it holds that

(5.2) 20\ —24,(0)/£(0) \/ 14232 oun) S Kopn.
k=1 k=1
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Proof. It remains to show that z,>y,. Considering (3.4) for the left-hand
side below, then

zft(O)"‘k’o

~knCOSkx0\ "(0)/ k’ok" y,,’ O<x0<zm

it and only if Xj_; k20s, . c0S kxg=R20r n, 0<x,<2,; but this is true in view
of g0, 1=k-—n (which, for many concrete applications, is not a very re-
strictive condition). [

I Kernel Dirichlet [ Fejér Rogosinski 1 Fejér-Korovkin |de la Vallée Poussin
| Type 11, ‘ mF 1, mr m’
. | n | n n
{ T X :
1 7 {
Ck,n 1 (24) ©OSouil (6.1) % (6.2)
. @2 i 2 712 ‘ (n!)2227
tn (0) A A I e L R L)
- B =@ h(g/,z),, | oz &
2a 22 3 3a
| 241 n+1 2n+1 I n+2 o
z ‘ Itipl
Zn i ~a/n ~92/n ~(32/2)/n i ~3a/n mu txg’:cu)
| 3.1416 ! 6.2832 47124 ‘ 9.4225
| ~ - - el |
| V2/n . ! V2/n |
GO e ’ L 14142 |
~ ! _ | ] |
2|n 2/n 2/n
@2 2.0000 ' 2.0000 ) |
Rt V" '
(3.3) . n¥nt2 J- ‘5f3 R 2\/31
~2)/3 ; a2 n =T
S 2.8079
|- - - - _— i
| < |
(/2)/n (7/2)In . ,
“2) 1.5708 o I 15708
Caa ‘flivai : { n’n / J"n i 11’” {
@3 - s 31416 | J.
T - | = ‘ | .
V6 n lm/al/n ‘
[ n n+2 | n n+2 Pt *
(52) - | ) ot 1 27 1 —
| Wi L ~2Y3n zl/ﬂ_s - | = : ~2/Vn
2.4496 | 3.4641 3.2493 | 3.1941 | o |
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A similar method using a fourth degree parabola may be applied to 7,611,
where z, is then at least of multiplicity 2; hewever, the calculations involved
become more intricate.

6. Check-out. We conclude with a comparison of the accuracy of the
different distance conditions by means of selected polynomials, in particular
of well-known kernels of approximation theory, the zeros of which happen to
be known explicitly. These results are collected in the Table (see p. 95).

Remarks. The global estimates (3.1), (3.2), (4.2), (4.3) as well as the
distance conditions (3.3), (5.2) depending upon the individual polynomial give
the exact order of the first zero with varying constants; the interpretation of
their sharpness is obvious. However, a striking “counter”-example is the kernel
(Example 5) of de La Vallée Poussin revealing certain restrictions of the methods of
Sec. 3/5.— For the definition of the kernels of the Table, in particular, for
their closed representations, enabling the exact determination of the corre-
sponding z,’s see [5, p. 517 f.|—

ka

k T osin L
n-+2 n+2’

T n+2

ka

1
n+2 + I_I-FQ cot

Ok (K):(l )cos

or.n (V)=m)2/(n—k)! (n+ k)
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