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ON THE CAUCHY PROBLEM FOR A CLASS OF QUASILINEAR
DEGENERATE PARABOLIC AND ULTRAPARABOLIC EQUATIONS

GEORGI 1. CHOBANOV

The local existence of classical solutions is studied for the Cauchy problem for a class
quasilinear degenerate parabolic and ultraparabolic equations of second order.

In the present paper are proved the existence and uniqueness of classical
solutions for small values of the variable ¢ for equations of the form

(1) a'’(x, t, wyu,y+a‘(x, t, w)u;—u,—a(x, t, wyu=f(x, t)

with a¥(x, 1, $)§:5--0, E=(5,. .., &)ER" (where subscripts are used to denote
differentiation and summation convention is accepted) in cylindrical regions of
the form G- ©x(0, 7), where £ is a bounded region with piece-wise smooth
boundary in R*. The study of the case Q=R" as well as the study of some
boundary value problems for ultraparabolic equations are based on the results
thus obtained. The necessary a priori estimates are corollaries of those obtained
in [1; 2] (of which works the present paper is a continuation) on the assump-
tion that

(2) a(x’ tv 5)—:"ao>0,

where a, is large positive coustant. This assumption is omitted in the present
work because of the particular form of the equation (1), the existence of solu-
tion for small values of # only being proved with the aid of substitution of
the form u=e*v (leading to inequality of the kind (2) in the linear case for
appropriate 1).

In what follows, where there is no need to emphasize the special role of
some of the variables (for instance ¢ in (1)), we shall put for brevity (x, )=y,

i.e. y=(Yu--+» Ym)R™ where m is the number of independent variables, and
we can rewrite the lefthand side of (1) in the form

3) M(u) = b¥(y, wyum+ b*y, ), —b(y, wu=f(y),

k, l--1,..., n+1, where the meaning of the coefficients is obvious.
As in [1] the following notations are accepted. If the coefficients of (3)

are defined for (y, s)cGX|[—M, M] (M>0) and the boundary 0G is piece-wise
smooth, let dG--S,U S, where

Sy ={yc0G: ¥y, spu( Y ) >0, se(—M, M}}

S—={y0G: b¥(y, spd y(¥)=0, s¢[—M, M]}
and if ALy, 8)=(6*(y, S)— by, )m(y) let S=S5,US,, where
SERDICA Bulgaricae mathematicae publicationes. Vol. 5, 1979, p. 3—12,
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(4) S\ ={¥S: 8y, $)=0, s¢[—Mm, M]},
(5) Se={y£S: B(y, 8)>0, s¢[—M, M|}

(here »,(y) denotes the k-th component of the unit exterior normal at a point

y0Q).
If f(y) and g(y, s) are differentiable functions with domains in R™ and
Rm+1 respectively, and a=(ay, ..., an) is an ordered m-tuple of nonnegative

integers, let by definition

a

D“f(y)zd“‘f(}’n ey y"l)/dylal £ dymm’
Detrg(y, s)=0'F7g(yy, o .oy Ymy S)/OYT .. .0y,mos?,

where [a =27 ja, Ii & is a nonnegative integer and if / is & times continuous-
ly differentiable in @, let by definition

(6) flleway=maxg | f(¥) ],
(7) ilj li?Ck(.g) ZEIGISk |I Daf ':‘(6)'
(8) ; Dkf =mMmax =k lD“f |Cv((_7)'

The following notations shall be used too [1].
(9) M,=maxg 4 M]{ De+pprt| | Detrbkl,  DetPb |

a +p=r, r=0, 1, 2, 3, and
Cwy=M(1+ Du),
Cy(u) = My(1+| D'u|+| D'u ®)+ M, | D*u,
Cy(u)=Ms(1 +| D'u | +|D'a 2+ Du®)+M, D?u(1+Dw)+M, Dul.

The following propositions are preparatory for the proof of the main

result.
Proposition 1. Let the coefficients of the operator

(10) M, (v; u) = edu+ b*(y, V)~ 0y, Vur—b(y, v)1

with b*(y, $)&5-0, b(y, s)=b,>0 are defined and four times continuously
differentiable in R™x[ M, M), the inequalities (9) hold with G=R™ and
outside some bounded region w, the operator M(v; u) has the form

(11) M,(v; u)= (u+e)du—bou,

where |/dsu+e<1/3, 0<e, 4 is the Laplace operator. Let Qp be the cube
Qr=1{YER™: yu|<R, k=1,..., m}, where R>0 is such that Qp>Dw. If
eCHQp) and hcCYQg) with supp hC w, then every solution of the boundary
value problem

(12) M,(v; 8)=h(y)

in QR and
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(13) llonR:O
is of the class C%Qp). Furthermore if b,>1 and R is sufficiently large, the
inequality

(14) Yjaj=2 MaXogp | Dou 2< b5 || k||

9
2

C‘(éR’

holds.
Proof. As it is well known ({3, p. 235]), the boundary value problem

(12), (13) has an unique solution u, which is at least of the class C® in Qg
and on the smooth parts of the boundary. We shall prove that actually z can

be extended to a function ZGC"’(QSR). This may be done by “extension by sy-
mmetry” as in [4]. To this end let us consider in the region

Py {yR™: —R<y,<3R, | y:|<R, k=2,..., m}
the operator
(15) Lv: ) =edu+b*(y)un+ b4 y)u,—b(y)u,
whose coefficients for fixed ©6C4(Qr) and y=(yy;, V'), ' =(¥ay .- ., V), are de-
fined by

6 Bv [Py, o) for nI<R
(16) B3 Y)Y\ (L 1yipri2R—y,, 3, 2R—3y ¥)) for R=y,<3R,

where o,=0 for k=1, [-=1 and for k=1, /=1 and o,=1 otherwise;
By 3/ {b*(y, wuY)) for nI<R
(= Db 2R—y1, ¥, v2R—y,, ¥')) lor R=y,<3R,
where 0,=0 for =1 and o,=1 otherwise;
By y)={b(y. 2 y)) for I3 <R
b2R—yy, ¥, Y2R—yy, ¥)) for  Rsy <3R
and let
Hyw ¥)= { A(y) for InI<R
' —h(2R—y,, y) for R=<y,<3R.
Because of (11) and supp #Cw, the extensions defined above will have in P,

the same smoothness as the coefficients of (10) have in Qg Furthermore, the
operator (15) is an elliptic operator, since for R<y,<3R and &*=(¢, ..., &)=

(—51, s ooy En)
5“()’1: y')é,é,=b*‘(2R—y,. Vs v(2R—yy, y’))ﬁE;Ze |[&*P=elg l’-
Let u be the solution of the boundary value problem
an Uv; )=k
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in P, and
(18) utop,=0.

Obviously u¢C*(P,) and on the smooth parts of dP,. From (16) it follows that
b4(y,, v')—( )7 b*(2R—y,, V') for (y,, y)eP, and analogous equalities hold
for the remaining coefficients. This allows the computation of the value of
the operator (15) for the function zT(QR—yl, y'), whence

(19) Lw; u2R—y,, y)= —L(v; u(y,, ).
Let
(20) ’E)(yh _\") ,-.E(yh y')+lI(2R— yi‘ _V,).

Then (18) and (19) imply Lv; @) 0 in P, and w op, 0. Now the unique-
ness theorem for elliptic equations implies that @ —0. From (20) it follows
that E._.,FR 0, i.e. that u and u are the solutions of the same boundary va-
lue problem in Qg and by the uniqueness theorem u(y;,, y’)———Z(y V) for —R<
y,=R. Successive “symmetries” with respect to the walls y,= —R, y,/=R,
k—2,..., m allow the construction of a function u¢C5Q,;) such that u(y)
=u(y) for y¢Qp. When R is large (11) implies that for instance in the region

QR+,_\ Qr—1, i. e. in a neighbourhcod of 0Qy, the function U catisfies  the
equation

21) L) = (u+ e) M — bou 0.
According to the wellknown Schauder estimates [5, §5.5], the inequality
(22) ey xp=Cll—o/r)~ @Y L't cyix p+ ] cyxph

holds, where 0<y<<l, X, ={ycR™: y|<gj, 0<o<r-=r, for every ucC, (X,
and the constant C depends on y, m, u, b, and r, is determined from x and
b, only. The norms above are the Holder’s, defined as in [5]. Now (22) with
r=ro 0 ="ry/2 and (21) imply

Yal<2 maxx , D‘E<C"29(2 r,)3( L'ZIC,(I,"V‘*' ; c“(‘;rn))"\‘.(:" 1 Z Colp )
where C’ depends on y, m, u and b, only. From the above inequality applied
in vicinity of every boundary point of Qp and the way u is extended to
u it follows that

1 . = "y o o ”i
Zi2MaXogp | Dt | = Zazamaxage D' SC” i cyo,, 0, p=C" il cho 0, )

Now lemma 1 from [1], applied to the boundary value problem (12), (13) im.
plies u(y) =b5"||%| .o , and the considerations in [2), preceding lemma 2

imply that for R sufficiently large the inequality (14) will hold.
Proposition 2. Let the hypotheses of proposition | be satisfied and
bo>14+(2m+ 1)C(v)+m'Cy(v), where m’ depends on the dimension m -only.

' a < w— | 2
Then X, -(Du)?-.b;! rhl'C‘(Q, R‘.
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Proof. [2, lemma 2].
Proposition 3. Let the hypotheses of proposition | be satisfied and
bo>14(4m+-2)C\(v) +m"C(v), where m"” >m' depends on m only. Then

v —1 |2
(23) Za=ADeuy=b5" |k l'c'(6R>'
Proof. From [1, lemma 3, (69)] follows the inequality

E,,, SQ(DH),:: max {bo_' ‘\I h ”C,(Q—R), maonRE\alég(D"u)’}.

Now (23) follows from (14).

Proposition 4. Let the hypotheses of proposition 1 be satisfied and
bo>2+4m,C\(v)+ m,Cy(v), where m,>>4m+2 and m,>m" are constants depend-
ing on m only. If R,=X.—3(Du)? then

(24) R, =< b ?miM? max (X, <o(D*u)?) max R,+ M,

where M' does not depend on u, v and e.
Proof. From the interior Schauder estimates [3] in the form

' !'c3+,(:0);(;'"(“ L'u ‘Cl+y(“"r)+\ u ,Co(-‘-.'))’
as above it follows that there exists a constant p, which does not depend on
v and e, such that max dQR R,<p. Now (24) follows from [1, lemma 4, (112)].

Theorem 1. Let QcR" be a region with a piece-wise smooth boundary

and G=0x(0, T). For G >G let in G X[—M, M| be defined and two times
continuously differentiable the coefficients of the operator

(25) M(u) = a'(x, t, wu;;+ai(x, t, u)a,—u,—a(x, t, u)u,

theirs second derivatives being Lipschitz continuous and let a'’/(x, t, 5)¢;6,=0
(£€R™) for (x, e, s¢[—M, M. Let fcCXQ") its second derivatives being Lip-
schitz continuous and

(26) f(x, )=0

for (x, O)¢G. Let I'=002X(0, T| be S, for the operator (25). Then there exists
a real r with 0<t<T, such that if G,=02X(0,1), the boundary value prob-
lem M(u)=f in G, and

oy (aexion=0
has unique classical solution.
Proof. Let the coefficients of the operator
(27) Mo(v: ll) = bii(x’ t’ v)uil+quv f)ll”+ bl(x' tv v)u,+b°(x, t)a,—b(x, t. v)u

are defined in R"+!, coincide in G with the coefficients of the operator (25)
and b/(x, t, $)&,E;+0"5=0 (&, &y ..., E)ER™, 8%(xt)=—1 for ¢=T. Further-
more let there exist real numbers R and R” such that R’'>R,

Qr DG, the boundary dQg is S, for the operator (27) and outside the cube
Qr» the operator (27) has the form My(v; #)=uAu (1/4<u<1/3). Such exten-



8 - ve G. 1. CHOBANOV

sion exists, since the coefficients of (25) are defined in @ >G. Now let the
coefficients of the operators

(28) M(v; u)=—= bi’(-\-' t, v+ b?O(x, D+ edu
+bi(x, t, v, + O(x, tiu,—b.(x, t, v)u

be appropriate smooth approximations for the coefficients of (27) in R+,
Such approximations may be constructed for instance by using modifiers [6],
and they can be choosed so that outside the cube Qg the operators M,(v; u)
will have the form M,(v; u) (u +¢e)du. 1If now

(29) M, =max | D+rbl , De+rb® Detebi |, Jiep0 | Db, |},
|a +0=k, k-1, 2, 3, the constants M, exist and are determined by the ma-
ximums of the derivatives up to second order of the coefficients of (25) and

by the Lipschitz constants of these derivatives. Let f,(x, ) be sufficiently
smooth approximations for f(x, £). Because of (26) we can assume that

(30) Suppf,CQRl, f,(X, t);o (t<i0)

Let n,=max.,_, D*f,(x, )|, k=1, 2, 3. These constants are determined from
the correspondent derivatives of f and the Lipschitz constants of the second
derivatives. If F,i(x, {)- e "f,(x, £) (A>0) (30) and Taylor’s formula imply

s, £ %y B B,
Jul, )=t 06 ¥) =g 5 (40 7) = g G (%, ¥,

whence |F, (x, t) e tn,— e " (il)n,/i-~mn, /i, where m — max,.oe . Therefore

(31) For cxgnety=m'n/a,

the inequalities

(32) [ Fa oo+ 1y m'ng/a3,

(33) | Forlleygney=m'ny, | Foil cypntry<m'ng/i,
(34) | Fe | Curn+1y=M"n5,

(35 | Fo flc-(RnH)S m'ns,

where m’ denotes a constant depending on the dimension n-+1 and on the
maximums of the functions e—*, fe—¢, fe—* for £=0 being obtained similarly.
If u is a smooth function in the halfspace {{<7z}, it can be extended to a

smooth function uz in R"+! (as in [5, §4.8]) in such a manner that
(36) ll Eiic,m..u)seil i |levftssyy

where 0 is independent of r and u, provided the right-hand side is defined.

If for a function wu, with D, |D'u ., D3|, are denoted the maxi-
mums of the function and its derivatives for f<z (cf. (8)), then for the fun-
ction

37) w=ey (A>0)
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hold the inequalities
l 1D0w 'S__e;" DOu R

(38) |D\w|.<e(|Du +1 D)),
| Dw |,<e**( D |+24 | D'u|+23| D |).
Let now
(39) L..(v, u)=M,(v; u)—iu,

where for a(x, t, s)=1, (it is possible 1,<0 also) the constant 1>0 satisfies
the inequality

(40) A4 1,>2+ n M+ ngMy+ (my M, + noMo)bm'n (1 +(A+10)~'72)
+ R MoPm " ni(1+ A+ 20) 172 )+ naMibm o3+ (1+4-2)~17),

where M, and M, are defined with (29) and 7n, and n, are connected with
the dimension n+1 as in propositions 2—4.

Let R>R"” be such that in Qp hold the hypotheses of propositions 1—4
for 2 defined as above, let {e}>  be a sequence of real numbers with

im, ,.e, =0 and &,>¢,,,>0, and let
(41) r=min (7, i~ In (14 4y)'?).

Let us consider the sequences of functions {a,}>= {11.}:;0 and {v,}> , defined
as follows: uo:u::_'v,,—O and if u, and a, are already defined, then let z,.,
be the unique solution of the boundary value problem L, ., (a, ; Upiy) = F., 414
In Qp and v,., l,,QR::O; now by definition

(42) U, =",
and u,., is a smooth extension of u,.; across the hyperplane {f=r}, i.e.
(43) (X, )=1t,.1(x, t)
for f<r. From (36)—(38) and (42) follow the inequalities
| D°u, | <6| D'a,}.<fe' | D°v, |,
(44) | D', | <6 | D'a, |.<be'<(| D\v, +1|D°,)),
D%, | <8 | D%, .<bex(| D*v, |+21| Do, |+ D%, |)
for every ». We shall prove for every » the inequalities

(45) 429> 2+ nyMy +ngMy +(n, M, + neMs) D', |
+ noM, |D'a, 3+ noM, | D,
(46) ' v, [$(1+10)'-l ” Fa,.l “C!(Q_RV

(47) | D'v, P=maxg, (Do, P42 | Fo 2,50
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(48) Do, 9$max5R.‘.‘..,,:;(D°'v, P<(A+4) ' F, , Z_.(O_R‘.

Indeed, (45)—(48) hold for » -0 since u,—u, v, 0 and (40). Let them hold
for some ». Since (45) and (40) imply that all the hypotheses of propositions
1—3 are satisfied, the inequalities (46)——(48) hold for »+ 1. From the right-hand
side of (45), (41), (46) —(48) for »+1, (31)—(34) and (40) follows that (45)
holds for »+1, i.e. (45)—(48) hold for every » Now (45), (47) and proposi-
tion 4 imply

Ry, = niMim'n3(i+ ko)~ max R+ M.

But from max R~=H? max - ,;)R,,v~;H2e7*'R,,,,+ M, where according to the al-
ready proved M does not depend on » follows max R,  ,=amaxR, +M",

where according to (40) and (41), 0<a<'l. Now the uniform boundedness of
the sequence {R, }=  follows directly, whence follows the same for {R, }=

y=0
and (R-}=_. By using (40), (46) -(48) and considering the differences
LlH_l.i(EV; z'w&l)le,.?(l\lv 15 Oy ): F»,‘_-'_].i—Fr,.f

similarly to [1, lemma 5] is proved that {u, 1, and cosequently [z, [~ and
{©, }=, are uniformly convergent in Qg

The Arzeld-Ascoli theorem and (46)--(48) imply that we can chose an
uniformly convergent subsequence {7, |~ such that

v-limv,, limDw, -Dw, a<2.

p—ro0 o

Since the sequence .,'E,u —1}= , is also uniformly convergent, we can pass to
limits in the equalities L, ,;_(Z, 13 v, )=F, , and for u-1im E'u_l we ob-
“ " " Y

tain M(,(E; v) —iv- F, in Qp, where F,(x, {'—e ' f(x, f). The equality 11,,QR,=0

is obtained by integrating two times by parts the identity

(49) My(a; vv—1v2=0

over the set Qx\ Q as in [1, 2] (and as usually done in the linear case (7]),

since 1 is sufficiently large, f(x, £)=0, dQr, is S, for the operator (27) and

the derivatives of the functions z and v are bounded by constants as in (47)

and (48). Now applying the same procedure again over the set {(x,%) : —R

<t<t, xx|<R, k=1,...n)\G we get v, ,,- 0, since QuI'is S, for the

operator (27) and (26) holds for the function f. From (42) follows that
u—lima, -—e'v

and now (27) implies that the function u-— e*v satisfies the equation
ail(x, t, Wi’ +ak(x, t, a) —u,—a(x, t, wyu—f(x, t)

in G and ulg, r—0. Since (43) implies that u(x, #) ~u(x, ¢) for O0=t=r, this
proves the existence.
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The uniqueness is proved similarity as in [1, theorem 2] or [8]. More pre-
cisely, if u is the solution constructed above and 7z is some solution, by con-
sidering the function w—e*(u—wv) in the region 2x(0,r) and applying the
maximum principle for parabolic equations with appropriate >0 one obtains
that w=0.

Remark. The solution # obtained above has derivatives up to second or-
der, its second derivatives being Lipschitz continuous. At that, as seen from
the proof, the maximums of the derivatives and the Lipschitz constants are
determined from the coefficients and the right-hand side of the equation only
and do not depend on the region. The same is true for the constant 1 and
consequently for the interval [0, r] in which the existence is proved. These
facts are used in the proof of the next theorem.

Theorem 2. For 0<B«R, k=1,..., m, 0<8 and
P-vER™: yu <Bp k=1,..., m}, Ps={yeR™: y,|<B,+96, k=1,..., m},
H=RrXP, Hy=R.XP,
let the coefficients of the operator
(50)  L(u) = a’/(x, y, wu,; +a‘(x, y, u)u,+b*(x, y, u)ou'oy,—c(x, y, u)u

he defined, two times continuously differentiable and bounded together with

their derivatives in Hyx| -M, M), the second derivatives being Lipschitz
continuous. Furthermore, let

(51) a’l(x, y, )&, =0 (2R, (x, Y)eHs s(—M, M),
(52) b™(x, y, §)=ua<0

and the coefficients b*(x, y, s) have constant signes on the hyperplanes

Ve=+Be (k=1,...,m—1).If fcCxH, ) has bounded derivatives up to second
order, its second order derivatives being Lipschitz continuous and satisfies
compatibility conditions of the form

f D)= 5506 D)= 553 9)=0

for y,— +Bx (R=1, m—1) if this part of the boundary is S, (for the
definition of S, and Sn see (4) and (5)) and f(x, y)=0 for y,<0, then there
exists a constant n with 0<n<§p,, such that the equation M(u)=f(x, y) has
unique bounded classical solution in the region HN{(x, y):0<ym<n} satisfy-
ing the boundary values u s,y —oy =0.

Proof. Application of theorem 1 for regions of the form

Qu={(x, ¥): x;|<R i=1,..., n; |y, <Bp k=1,..., m—1; 0< Ym<Bm)

for appropriate modifications of the operator (50), so that the part of the
boundary x, - £R is S; (cf. 2, theorem 3).
Let {R, }o_, be a sequence of real numbers with R, — co. Theorem I

mplies the existence of a sequence of functions {u, |~ , which are uniformly
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bounded together with their derivatives up to second order, the second order
derivatives having the same Lipschitz constants for 0<y, < ». From this sequ-
ence can be choosed a subsequence which is uniformly convergent on every
compact subset of /7. The limit of this subsequence is the desired solution.

The uniqueness is proved as in [8] or as in |2, theorem 5]. More precise-
ly if u is the solution obtained and 7 is some bounded solution, by consider-

ing the function w=¢"”m(u—v) it is established that w satisfies equation of
the form

» 2w X ow ow
a”(xl Y ‘U)m‘_‘/ +a‘(x, v, v)‘a_;:“ + bk(x, v, 'U)o—yk

+(Ab™(x, y, v)—c(x, v, V) W=D(x, V),

where for an appropriate Ai>0 the quantity 16™(x, y, v)—c(x, y, ©) can be
made sufficiently large and negative according to (52). Further on the proof
goes by applying a variant of the maximum principle for ultraparabolic

equations.
For m— 1, theorem 2 is close to the results obtained in [8]; for n—1,

m —2 it supplies a proof for the results, anounced in [9].
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