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SOME NOTES ON REAL BANACH ALGEBRAS

HRISTO N. BOYADZIEV

Inequalities are given for the spectral iadius and the norm in a real unital Banach *al-
gebra which imply symmetry and C*—equivalence respecrively. The results are similar to some
of those in BoyadZiev (1977) for complex algebras.

Throughout A will stand for a real Banach algebra with unit ¢ and con-
tinuous involution x — x*. Defails about real involutory Barach algebras can
be found in [2; 6].

If A,C A is a closed *subalgebra, by A,. we denote its complexification.
Every x¢ Ay, has an unique decomposition x-—-a+ib with a, ¢ A, and x=a
+ib — x*=a*—ib* is a continuous involution in 4., Evidently 4,, C A.. For
x¢A, by Sp(x, 49~ Sp(x, Ayc) we denote its spectrum with respect to A,
and Sp(x)—=Sp(x, A); by o(x) we denote its spectral radius and by x| its
norm.

An element x¢ A is called self-adjoint if x*—=x and skew-adjoint if x*-
—x. We denote:

H-{xx¢A x*=x}, J- {x x¢A, x*=—x/,
K—{xx=Sha1 XaXp X, €A, 1 =k=n, 1 <n< oo},
K, {x|x¢H, Sp(x)=0|.

Evidently /7 and / are real Banach spaces and K is a wedge (Zx¢K,
x+y€K for x, yeK and i1 -0) generating H(H-=K—K as x=[(e+x)’
—(e—x)| /4 for every x¢H.

We also denote by P the set of all linear functionals f defined on /7 which
are non-negative on A, with f(e)- 1. As K generates H, every f¢ P takes real
values.

Remark 1. If fis a linear functional on /7 and non-negative on K
then | f(x)| = f(e)o(x) for every x¢H.

Proof. For x¢H and O0<¢<<p(x)—' there exists [2, 4.1.4.] an u¢ /{ with
u?=e—tx. So f(e) tf(x) and letting 7-—o(x)"' we obtain f(x)- f(e)e(x).
Also  f(x)- f(—x)~ f(e)o(—x)=f(e)o(x) so that f(x) = f(e)e(x). Thus
for every f¢ P we have |f(x)| o(x).

The algebra A is called symmetric, if e +x*x is invertible for every x¢ A.
Equivalently Sp(x*xy) -0 for every x¢ A. If A is symmetric, the set K, is a wedge
and K C K.

Remark 2. Every /¢ P is non-negative on K, if x¢ K, and ¢>0, x-ee

a*¢ K with a¢ H([2, 4.7.2.)), so for every f¢ P we have f(x)>=—ef(e) and
letting ¢ — 0 we obtain f(x) 0.
If A is symmetric, the converse is also true as K C K,.
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We need the simple lemma:

lLemma 1. /f A is symmetric and A, A is a closed *subalgebra con-
taining the unit, then 7, is symmetric too.

Proof. Let x¢ A, We have Sp(x*x) -0 and as Sp(x*x)— Sp (x*x, Ayc)
(according to [2, 1.6.13.]), e+x*x is invertible in A,.

The following theorem gives more information about symmetric real unital
Banach *algebras.

Theorem i. For A the following conditions are equivalent :

1) A is symmetric;

2) Ewery self-adjoint element has a real spectrum and every skew-adjoint
element has a purely imaginary spectrum ;

3) o(x)=sup {f(x) f an extreme point of P for every x¢K;

4) o(.) is monotone increasing on K,

5) o(u?)=o(u?+ x*x) for every utc H, x¢ A such that u?x*x = x*xu®.

Proof. 1) »2). That every a¢ // has a real spectrum when e-+u* is in-
vertible for every w¢ /7 is proved in [2, 4.1.7.]. We shall show now that every
acJ has a purely imaginary spectrum. Let a¢J and [a] be the closed com-
mutative *subalgebra generated by e and a. Let [a]. C A, be its complexification
and let .1 be the set of all multiplicative linear functionals on [a].. For every
xelal, Sp(x, [aDN\JO}=/f(x) fe ANJO}. Let f¢ 4 and f(a)=a-+if with a,
pe R (the reals). As [a] is symmetric according to lemma 1, we have 0= f(a*a)
=f(-a*- —fla)®=p2—a>—2api. So we must have ap-=0 and hence a=:0.
Thus Sp(a) C Sp(a, [a])ciR.

2) 1) is proved in [4 (lemma 1)].

Now we prove 1), 2) > 3). Let 4 be symmetric. For every a¢ /H we de-
fine as in [3]:w(a)- sup{i A2¢Sp(a)} with values in R and the properties:
a) ulaa) au(a) when a« -0 and b) u(a +b)=ula)+ub) when a, be¢ H; a) is
obvious, b) is true for ¢(.) [2, 4.8.10.] and if we take f>0 such that a-+fe,
bitec K, then wu(a-+b)+2t—u(a+b+2te) —o(a+ b-+2te)--o(la-+te)+o(b+te)
~u(a+te)+ulb-te)  n@)+ulb)+2t as u(x)=o(x) for x¢ K,. So b) is true
for u(.). Now a) and b) hold also for »(a)- max{u(a), 0}, ac H.

According to the Hahn-Banach theorem, for every x¢K, there exists a
linear functional f defined on A with f(x)-»(x) and f(u) »(u) for every
uc H.1t uc K, v(u)—=o(u) as u(u) —o(u) for uc K,2 K. For u¢ K, we have v(—u) -0
and so f(u) 0. Also f(e)=»(e)- o(e)- 1, so that f¢P.

As the set {f fcP, f(x) - o(x)} is non-void, convex and weakly compact
(accordmg to remark 1), it has an extreme point (Krein-Milman), which is also
an extreme point of P. This and remark 1 prove 3).

The implication 3)  4) is quite easy and 4) - 5) is obvious.

Now we prove 5) -» 1). Let x¢ A with x*x4=0 and let £>0, {< x*x —'.
There exists u¢ H with u?=e—tx*x, i. e. e—u?-+tx*x. According to 5) e(u?)

1<l+¢ so that we have ole(l +¢)"'—#1+¢) 'x*x|<1 and the element
e—le(1 48y ' H1 -+t 'x*x]=H1+¢t) e+ x*x) is invertible. Hence e-+ x*x is
invertible.

Remark 3. If A is syminetric, it follows from remark 2 that 3) from
the above theorem holds for every x¢K, and hence o(.) is monotone in-
creasing on K.

lLemma 2. Let in A:

a) |lu? | u?tx*x||
hold for every u¢ H and x¢ A such that ux*x - x*xu®.



NOTES ON REAL BANACH ALGEBRAS 309

Then A is symmetric and o{x)—  x for every x¢K, (Hence the norm
is monotone increasing on K, according to remark 3.) The converse is also
true: if A is symmetric and o(x)=! x| for x¢K,, then a) holds according to
5) of theorem 1.

Proof. Follows the lines of the proof of lemma 3 in [I].

Theorem 2. Ifin A the following inequalities hold :

a) |u* = | u?+-x*x | for ucH, xcA, u?x*x—=x*xu?,

b) a? aa® for a¢J, a — constant, then A is homeomorphic and
isomophic to a reul C*-algebra of operators acting on some Hilbert space.

Proof. It follows from lemma 2 that A4 is symmetric and for every
XEK,y, o(x) ||x|. If u¢ H, then u-+o(wec K, and we have |u —|ju-plu)e
Fo(u) —o(u-t-e(u)e) -o(u)="3o(u). Now | u!2- 9p(u)? 9o(u?) 9 u® . The theorem
follows from proposition 1 of [4], where it is shown that the set of all unitary
elements in the complexification A, of A is bounded, so A, is C*-equivaleni.

Remark 4. It is easy io see, according to 2) of theorem 1 that if Ais
commutative and symmetric, its complexification A, is also symmelric, as every
self-adjoint x ¢ A, is decomposed x =a-ib with ac¢ H, b¢J so that the spec-
trum of x is real (using multiplicative linear functionals on A.). It is inferest-
ing whether this is true in the noncommutative case.
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