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EPIDEMIC PROCESSES ON RANDOM GRAPHS AND THEIR
THRESHOLD FUNCTION

LJUBEN R. MUTAFCIEV

In this paper we consider random graphs, corresponding to random self-mappings of the
finite set {1, 2,..., n} in which m points are “infected”. We discuss several schemes of an
epidemic process, in particular, the case when the infection is delivered inversely to arc di-
rection.

An asymptotic formula is derived for the average number of the cyclic graph’s elements
which are contained in components of sizes exceeding an, 0<le<{l. Using this result, we
prove that the probability of infecting an essential part of the graph (having the size O(n)) tends

to 1, whenever Jn =o(m).

1. Consider the set ¢, of all mappings of the finite set X={1,2,..., n}
into itself, which satisfy 7x=x, T¢3, x¢X. There are (n—1)" different map-
pings in ¥,. Each mapping T ¢3, is a digraph G, whose points belong to the
set X; the points x and y are joined by an arrow iff y=7x. G may con-
sist of disjoined components and each component includes one cycle. We clas-
sify the components of G, corresponding to their size, i. e. to the number of
points they consist of. Let an uniform probability distribution on T, be given
(each mapping 7¢Z, has probability (n—1)™"). The random mappings just describ-
ed are the second type mappings studied by B. Harris [1]. We shall consi-
der several schemes of epidemic processes on the random graphs G; which
were treated in the paper of Gertsbakh [2].

Define T#x to be the k-th iteration of 7¢g, on x¢ X, where k& is inte-
ger. y is said to be a k-th image of x in T, whenever for some 28>0, T x=y.
The set of all images (or successors) of x in 7T is S{x)={x, Tx,..., T"x}
(which need not be distinct elements). y is said to be a k-th inverse of x in
7, whenever for some 2<0, 7%*x=y. The set of all k-th inverses of x in
T is denoted by 7™ (x),and Pr(x)= J3__,T™(x) is the set of all inverses (or

R=—n
predecessors) of x.
Let m bacteria be placed at elements x,, x,,..., x,, where x, ¢ X, i=1,2,

A All(,’,‘,) different occupations are equally probable. An inverse epide-

mic process (IEP) is defined by the infection being delivered from the infect-
ed points to all their predecessors. The area which will be infected is the set
of all inverses of Xy, Xy, ..., Xm: Pr(m)= ™ Pyx,).

Now imagine that the arc connecting any two vertices x and y(x, y¢X)
carries infection in two directions: from x to y if x has been infected first,
and conversely. In this way we arrive at the two-sided epidemic process (TEP):
the infection is delivered from the infected points “backward” to all their pre-
decessors Py(m), “forward” to all their successors S;(m) and again “backward”
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154 L. R. MUTAFCIEV

from each x¢S,(m) to all its predecessors. The infected area will be Bz(m)
-PAm)USHm)UR(m), where Rp(m) = gespmy Pr{x).

Consider the function Ci(n):T, — R which maps each T¢Z, into the in-
teger | Px(m)|. (The symbol YA stands for the number of distinct elements in
the finite set A.) Similarly define Cp(m) as the function which takes value
| B(m)| at a mapping T¢%Z,.

Let 0<a<1, and consider the event {C/m)=an} which means that the
infected area arising from m bacteria exceeds a fixed a-ratio of all elements
in X (m bacferia infect an essential part of the population).

Definition. The function ¢,(n) is called threshold for IEP if

(1) P{C)(m)—=an} — 1 for ¢/ n)—=o(m),
(2) P{C/(m)=an} — 0 for m=o0(g,(n)),
for fixed a¢(0,1) and n— co.

Threshold functions were introduced by Gertsbakh, who posed the
problem to find ¢, (n) [2].

2. Summary of results. In Section 4 we prove the following asymptitical
results, when n — co.

The average number of the cyclic elements in indecomposable random
mapping is V2n/z+ O(1).

The average number of the cyclic elements in a random mapping, which
are contained in components of sizes exceeding an, 0<<a<ll, is Y2n/x (=/2

arcsinJa)+ O(1)-

In the case of IEP, ¢(n)=yn. The proof is based on the above asymp-
totic result.

In the case of TEP, if m — o as n-— >, and a¢(0, 1), then P{Cx(m)
=an} — 1.

The results in Section 4 are based on some preliminary lemmas which are
summarized in the next Section 3. Most of them are known.

3. The mapping T¢ T, is called indecomposable iff it generates only one
cycle. Let C, denote the number of indecomposable mappings in T, which
have exactly & cyclical elements. For n=k=2 Gertsbakh (2] found that

Cn‘kz(,kl) k! n7-*='. The number of all indecomposable mappings is

. N n2nk an
3) Bo- % Copr=(n—1)1 '3 F,,,l/z e(n—1)"1(1 + o(1))n — .
R=2 k=0 ™

Assign to each indecomposable mapping 7 the probability B!, and de-
note by &, the number of cyclic elements in 7. The generating function
of &, is

- g (n) il n—rx/
(4) Pulx)=Ex "= "5 Ay Jl n/x/.

Consider the probability space (3. UB(Tn), P), where {T,) is the o-al-
gebra of subsets of T,, and P is the uniform probability measure on ¥, Let
B, denote the number of components of size m(l=m=n) and in be the
number of cyclical elements in these components. Obviously
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\5) 1m=5m.1+5m.2+ s + &m.ﬁm >

where £, ; are independent and identically distributed random variables with
generating function P, (x) (see (4)).
The distribution of (8, Bs, ..., B,) for a given n=2 is

(n—1)"My(ks, ..., k), if S5 iki=n,

(6) P{Ba=kFks...,Br=Fkn}=
0 otherwise.

Here
n! Bk ... B
@ (n)enko!. . Ryt

and the £’s are nonnegative integers. The g ’s above would be independent
if it were not for the condition on X iki-
Now define the sequence of generating functions

(7 Mp(ky, ..., ky)=

Mmy=1, Mmy=0, Mu(Xoy ..., X)= X Myka,..., k)xh2... X%, n=2.
Royovun Ry
Siki=n
Using (5)—(7) and applying Bruno’s formula [3, Section 2.8], we obtain a re-
lation between gemnerating funclions m, and P,p,.
Lemma 1. If |z|=e!, z+e, then

S MaAPAX), - - ., Pulxa)) Z=exp (S 22 P(x,)2%)
n=0 n! 2 k!

holds for |xx|<1, k=2,3,..., n.

Let B(z) = X;-: B,z"/n!| be the exponential generating function of the
numbers B, For |z|=e~! introduce the power series S(z)= 25 n"2"/n! (z
e 1) and O(2)=2,= n"'z*/nl. It is well-known [4, Section 7.2] that the
function ©(z) satisfies the transcendental equations

(8) Oe =2, O(ze—?)=2(0(e1)=1),
and
9 S@)=[1—6R) .

Using most general combinatorial results [5] we can obtain

Lemma 2. For |z|=e 1, z==e™ !, holds exp {B(z)}=S(z) exp {— 6(2)}.

We also need the following inequality, which is independent from the
above combinatorial lemmas.

Lemma 3. Assume that & is an arbitrary random wvariable, defined on
a probability space (2, U, P) and g(x) is a non-negative, non-increasing
Borel-function on the real line. Then for every a=0 E g(§)<=g(a)P {{=a}+a.s.
sup g(&) P {¢<a} holds.

Proof. The inequality is a consequence of the relations

Eg®~ | g@+ | g¢) J g@=as supg P {i<a}, [ g(¢)= g(a)
{§<a} {¢=a) {i<a} {¢=a)
XP{é=a}
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4. Now we shall obtain the asymptotic of E &, We have introduced the
random variable &, in Section 3 with the generating functions P.(x) (see (4)),

Theorem 1. If n— oo, then the limit-relation E £,=YV2n/a+O(1) holds.

Proof. By the relation j! n—/—'= [e—"*x/dx, j=0, 1, ..., and by
(3) and (4) deriving and putting x=1, we obtain

P(1) :BL::_[OFU -‘-x)"f—’”‘(nx—l)dx—ofq(n’x’— 1)e—r*dx|

- nvn_ r 3 o—nx — o z_ _1_ .
. Bnof (14x)"e"*(nx—1)dx VM o (JE)’ n co.

To complete the proof it remains to obtain the asymptotic of /,=[¢ (1 + X)"
e " (nx—1)dx. We shall use the substitution 2?/2=xlog(l+x) or z=x
% (1—(2/3)x+(2/4)x?— - - )'? (see [6, Section 4.5]). Using the Lagrange’s
formul we obtain that /= 1+0(1/{ n) for n — co. Now from (3) it follows
P, (1)=y2n/x + O(1), which completes the proof of the theorem.

Furthermore we shall study the asymptotic of the mathematical expecta-
tion of the random variable us,—As+24s41+ - - +4n Which is equal to the
number of cyclical elements in arandom mappings with components’ sizes not
less than s. The s’s will be asymptotically equal to an for a given a¢(0,1).

Theorem 2. If s~an, a€(01) and n — oo, then E us,n=1 2n/n
% (/2 — arcsinya) + O(1). _ .

Prooif. By lemma 1, substituting x,=1 for j=s and xy=x for j=s+1
we have

B (Pyx)— 1))

48

wilx) 5= exp (B@) +

0 k

%
)
-
n =541
s
P

where wa(X)=m, (1,..., 1, % ..., x). Hence for the generating function of
us., it follows

) E x#on = (n— 1)~ ya(x)
. ! 1 w Byt d
/ﬁ e PelB@+ E T (Pho—D} o
o .‘ —=  Substitute in the last integral we™™ for z and choose
\0) the path of integration C in the plane w=§+ip
- as on Fig. 1 (see [7]). Here w,=1=1/\/s, w, = 1-
s —iNT—=(T—1/Vs )% @Wo=1—1/s +i/1—(1—1Ns)"

By (8), (9) and lemma 2 we obtain

dw
wn+l *

P N
“s,n n! 1 [er—Dwexp{ Z e ¢ -.-.(P (x)—1)
Ex™= Gy gar ¢ peivt K ‘
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Deriving and putting x=1 we get at once

n! 1 eln—1yw ;:

i B,wke—*™
E then = =1y 20 P ¥

’ dw
k! Pk(l)wn«}-l ¥
It is easy to see that the integral on the unit circle tends to 0, when 7 — oo
and s~an, 0<a<l, and the non-zero part of the integral is on the chord
Wy Wyt
. n 1 % e = Bwfe ™™ dw
Eun=goipam J €27 2, D g +o(l).
Put in this integral @w=1-—v/ys. For the same values of s it is easy to ve-
rify that
n! (n—1) (1—oNs) Oy _oh -
(10) aotpe L (A gn)yt =V2an e (1 +o(1))
Now we shall study the asymptotic of the sum
B B —/ _P’ 1)
- ¥ 1__0:) r(1—oNs) Pyll)
9(?) k=:+1Bk( Vs g k!
From the easily verifyiable formulas

U \k_pops _ RO g% i Bre ® 1 1
(1 Js“) e e (1+O(Js‘))’ it i o ma ’f*’o(ﬁ)' ke,
applying theorem 1, we obtain the relations
(11)
LTI W AN\_1YE 5 (k\k el
)=, 5 3 6RO ISl R I S e SO

We may consider the above sum as a Riemann’s integral sum of the func-
tion £—12e—*72 in [1, co). Therefore

. o —iv'/2 i
(12) (@)= |/ 3 [ £ dt00)=|/F S K @+00),

T

where 5
K(x)=/] &= da.
X Ju

Now (10) — (12) imply
14 foo
Eton= Yoy | e % K(@)do+0(1),

Putting again in the last integral *=p and simplifying we obtain that
I
E psn= ,—,‘—]/%,{ ef L(p)ap+O(1),
where L(p)=p~ " [11a (e—#*\t )dt, and the path of integration I7 is the one

corresponding to the substitution parabola. Obviously L(p) is the Laplace trans-
form of the convolution f,(£)« fy(f), where
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t)=(at)~1? t Rl liiy
[O=@E712, f8) =1 , when £<1/2.

The well-known properties of the Laplace-transform give

n V2 e 2n( = .
E usn 1/23 1f2 JT(TT?‘Z?)_*_O(I) = "( 3 arcsxn\[Tz)TO(l).

Consider now the IEP, described in Section 1. We shall find the threshold func-
tion ¢,(n). Remembering the structure of a mapping 7¢I we find that m
bacteria will infect a fixed a-ratio of all elements in X if there exist some
bacteria which are placed in cyclic elements belonging to components whose
sizes are not less than s~an. Let n,s be the number of bacteria satisfying
the above condition. According to the formula of total probability for the
distribution of n.., we obtain

2l(L\(n—1 n .
(13) P 1. = R} ,E,“k,)(mﬁk)/(m)}Pwm:‘l}-
Theorem 3. g(n) Vn

Proof. It suffices to verify the condition (1) for J n=o(m)and m/n — 0.
The proof of condition (2) is contained in the paper of Gertsbakh [2].

Since
(14) { nm,s = 1} {C(m) = anj,
it suffices to find a lower bound for the probability
(15) P{nms=1}=1—P {nms=0}.

By (13) it follows, that
n(n— n\'
P irma=01= 2 (") () Pluen=
Since

th () a) (=200 amt) (1= )< (%)

(16) P {pms— O} <E (1 —m/n)»s.

Let ¢, -2/ (7/2—arcsinyu) and g(x)=(1 —m/n)*. Applying lemma 3 for the
non-increasing function g(x) and for the constant c, yan—n/m >0 with the
restriction m/n -~ 0, we obtain

E(l —m/n)fsn: (l—m/’n)'"ﬁ(l~—m/n)—"r""P{;z,_,. -c,\/ﬁ—n,’m}
(17) B
a.s. sup g (usn.) P {y,_,.<c.\/n— n/m}
<exp(3—cam/\n) + P {coln—usn>n/m).
On the other hand, using the Markov inequality and the result of theo-
rem 2, we find that
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(18) P cafi—tton > 2} <% E (e Ni—sn) =0 (%) —o0.

Now combining (14) — (18) we obtain theorem 3.

Finally, we shall consider the TEP.In TEP one bacterium will kill each compo-
nent in which it is placed. In order to obtain information about the asympto-
tic of {PCr(m)=anj we introduce, as in theorem 3, the random variable g,
equal to the number of bacteria, which are placed in components with sizes
not less than s for the same values of s. Let /;, be the number of vertices
which participate in components whose sizes are not less than s. For the TEP
Gertsbakh has proved that for each function m=4(n) such that m — oo as
n — oo, there is a positive probability of infecting an essential part of the
graph. We shall prove the following

Theorem 4. If m— oo, as n— oo, then for fixed a¢(0,1), P{Cr(m)

=an} — 1.

Proof. As in the proof of theorem 3
(19) {Ems=1}c{Cr(m)=an}
and
(20) P {éms=1}=1—P {&m,s=0}.
Using the formula for the total probability, we find that
@ P temam0i= 2 () (] Pln=

n—s n \—1 —8 \™&
s("20) (m ) Ptz <(=X)"
Suppose that m=pn for some B¢ (0, a). Then
(22) (n—9)/(n—m))"=((1 —a)/(1—B)™ — 0, m — cc.
Relations (19) — (22) yield the theorem.
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