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ON CLASSES OF RANDOM SETS AND POINT PROCESS MODELS
K.-H. HANISCH

For a class of random sets called grain-germ-models, which are a generalization of the
well-known Boolean model, a formula for the capacity functional is given. Furthermore, for
a point process obtained by the Matérn-(2)-thinning procedure starting from a general sta-
tionary simple point process formulas for the first and second moment measures are derived.

1. Introduction. In this paper a class of random sets and a class of point
processes are studied. Both classes are generalizations of known models which
are constructed starting from Poisson point processes. The known random
set model is the so-called Boolean model, see [1], which is the union of
compact sets, called “grains”, located at points, called “germs”, of a Poisson
Point process. For the more general model, where the germs are points of a
stationary simple point process, a formula for the capacity functional is given.
The point process model generalizes) the second Matérn hardcore process,
see [2] and [3], which is obtained by a special dependent thinning of a
Poisson point process. For a point process obtained by the same thinning
procedure starting from a general stationary simple point process formulas
for the first and second moment measures are given.

Let us introduce some notations:

A, A, A(x)) random closed sets (RACS)
capacity functional of the RACS A

R d-dimensional Euclidian space

F space of all closed subsets of R’

K space of all compact subsets of R

Fy {FEF:FNK+ g} for KK

ay o-field belonging to F generated by the class
of all sets Fy, KK

0, o-field a,N K

ADB (x+yeRY: x¢A, yeB)} for A, BCR?

A (x¢R4: — x¢A) for Ac R4

Q4 Borel o-field of R?

g marked point process in R4 with mark space K

Mg set of all samples ¢ of @

M, o-field corresponding to Mg

P distribution of @ on (Mg, M,,)

v (non-marked) point process of R¢

M set of all locally finite counting measures on (R¥, £9)

m o-field corresponding to M

P distribution of @’ on (M, M)
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U set of all bounded measurable functionals u:R¥X K — R+
=[0, oc) with compact support

%4 {1—u:uclU, u=1}

Va d-dimensional Lebesgue measure

b(x, r) ball with midpoint x and radius r

[0, 1)¢ d-dimensional unit cube

2. Grain-Germ-Models. In this section we study a special class of ran-
dom closed sets (RACS)(see, for general definitions, [1]). Let us understand a
RACS as a random variable on a probability space (2, A, P) with values in
(F, s5). In the present literature mostly studied example of such RACS is
the Boolean model, see |l]. The Boolean model is the union of indepen-
dent almost sure compact RACS A(x;), the grains, which are belonging to
each point x; of a Poisson point process @' in R4 that is
(n A= U A

x’.esb'

As is well-known from the theory of random sets, the distribution of a RACS
A is uniquely determined by its capacity functional 7T,: T,K)=P(ANK==g)
(KEK).

For the capacity of a Boolean model A a formula is known (see [I]
and section 3 of this paper). But this model is in many cases not more than
a first approximation for the description of various phenomena in nature and
technology, because it possesses some bad properties (for instance, the
Poisson assumption and that the grains A(x;) can overlap one another).
This suggests to investigate model of the form (1), where

(a) @ is no Poisson point process and

(b) the grains are not independent.

So we will study in the following models of the form
(2) A= U (Ai+x),

(xi. A’.)G‘P
where @ is a random marked point process with mark space K. Let us call
them grain-germ-models.
3. The capacity functional 7, of a grain-germ-model A. Let @ be a

marked point process in R4 with mark space K.
Definition 1. The functional Gp:V — (0, 1], which is given by

Gplv)= J I ox, K)Pdy) (veV)

K x.K)€e

is the generating functional of the point process @ with corresponding distri-
bution P (see (!‘2

For a RA A of the form (2) the following theorem gives a relation bet-
ween its capacity 7, and the generating functional Gp of the underlying point
rocess &.
P Theorem 1. Let & be a simple marked point process of R* with mark
space K and A a grain-germ-model with the underlying point process .
For a set B¢K let vy be the functional defined by vg(x, K)=1-—1%® s(x),
xeR4, K¢K. Then

(3) TA(B) =1 —Gp(vg).
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Proof. By definition T (B)=P(ANB+=g)=1—P(ANB= ¢g). Because
of the construction of A

P(ANB=g)=P({ptMg: | (XHW(IGLx)] NB=g})
=P({otMg: for each (x, K)o holds (K+x)NB= g}).

Clearly, (K+x)NnB= & holds if and only if x@l?®B. Thus for the functional
fl@)=r el —18@B(X)), pcMg, we get: f(p)=0 if and only if at least one

point (x, K)ép exists with x¢K® B, otherwise flp)=1. This gives
P(ANB= g)=P{ptMg : f(®)=1})=Epf(®P)

= ]J‘ I (1—1g@s(x))P(dp)= Guvg)
K (x.K)ew
and hence formula (3).

Because of this theorem and Choquet’s theorem the distribution of a grain-
germ-model is uniquely determined by the generating functional of the under-
lying point process applied to the family of all mappings {vglzaek-

Examples. 1. If the RACS A is a stationary Boolean model, where
the underlying Poisson point process has intensity 4, then for each x¢R
the grains A,=— A(x)—x and A,=A(0) are identically distributed (see [l]). Let
o be the corresponding distribution on (F, o). Then the capacity funcliona]
of a stationary Boolean model is, see [1], T4(K)=1—exp(—2iEya(A,DK)).

2. Let us denote by ® a random measure on (R‘XK, £9X)o,) and by
P, the corresponding distribution on the space (Ng, St,k) of all locally finite
measures A on (R¥<X K, £9X)ox) (see [5]). Let & be the Cox process (doubly
stochastic Poisson process) in the space R?X K corresponding to the random
measure ©@. Then using formula (3) we obtain

TyB)~1— [ exp(— [ Ilges(x)Ad(x, K)P(dA), BeK.
Ng RIxK

3. An important quantity for a stationary RACS A is the volume frac-
twon p, p=Eva(AN[0, 1)%)=P(0cA)=T4{0}). Now we give p for a further
grain-germ-model. The point process is here a matern cluster process,
which can be obtained as follows: B

Let each primary point x; of a stationary Poisson process @ in the R®
(with corresponding distribution P and intensity 1z) independently on the other
poinis of @ generate a random with parameter . Poisson distributed num-
ber of independently identically on the ball &(x;, r), >0, uniformly distributed
secondary points. The union of all these random clusters of secondary points
will be denoted by @’. Then we obtain after long calculation, see [3], for the
volume fraction p-=T,({0}) of the stationary RACS

A= U (BO, R)+x) R<r,
i
D=1 —exp(—2z{4n(r— R)%1 —exp (—ukR®/r*)/3
r+R
+4a JRf’[l —exp (u(V(¢, R)—1))ldt})
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with
V(t, R)={63R* — 16£3R3 — 12(r*t? —t4)R?+-6r4t* + 16733 + 12r2¢4 — 218} /32£°r°.

In [3] some other grain-germ-models are studied, but the formulas are very
complicated and unsatisfactory.

4. The Matérn-(2)-thinning of a stationary point process in R% In
his paper [2] Matern studied the following thinning procedure, which
yields a hardcore point process with minimal interpoint distance R. Whereas
he used it for thinning a Poisson point process, here a general stationary
simple point process is thinned.

Let @ be a stationary simple point process in R? with finite intensity

4z and P the corresponding distribution on the space (M, ). First we mark

<5independen~tly with on (0, 1) uniformly distributed marks, that is, each
point x; of @ gets independently on the others a mark k,6(0, 1). The marked
point process obtained will be denoted by &, the corresponding distribution
on the space (Mo,1) %)Jlglmo,,)) of all locally finite counting measures on
R2<(0,1) by P. Then the following thinning operation is performed:

A point x; of the process @ is retained if no point with a mark less than
the mark of x, is in the ball &(x; R), R>0; otherwise x; is eliminated. Let

us call the point process @' c @ obtained in this way the R-Matérn-(2)-thin-
ning of &. Because of the independent marking @’ is also stationary. Let the
corresponding distribution on (M, M) be P’- The following quantities of a
point process ¥ in R are needed:

n-th moment measure u} on (£9)"

WEBX - XB)= [ T lax..xa(%, .- X)Pde),

cee Xneq:
n-th Campbell measure ¢} on (24" XM
PHBX Y)—‘Mf N laxy(Xy, - - -, Xn @)P(de), BEe(LY)", YeM,

..... an(r

n-th factorial moment measure on (g4)"
@B .. XB)= [ X la(x)... ls,(x)P(dn),

Xpeoos X,
x‘;t-xl. for it/
Palm distribution with respect to the points x;,..., x, (R4 P, . ., x, »reduc-

ed second moment measure K(£), (eR*.
Eor @tM let T.p be the translation of ¢ by x¢R4.
We use the following lemmas (see [6]):
Lemma 1. For all measurable functionals f: R"XM — R+

J X faw PR~ [ flan 0eid@n o))
ﬂnécn R4xm
Lemma 2. If ¥ is a stationary point process with intensity i, then
@i(d(xy, -y Xm @)=Pu, 5 (@O)upd(X,, - .y Xa))
P«),r,—.\'. ..... X, -t.(de.‘P),“;l)(d(xh ceey xn))-
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Let us first compute the intensity measure u}, of @, up(B)=EP(B),
Bcg?. Because of the construction of the thinning we get

WMB)= [ S 1X)IAx, &, 9)Pde)

Mo,y (k) €@

with Y = {(x, k, @)tR**(0, 1)X Mp,1y: @(b(x, R)X(0, 1))=a(b(x, R)X[k, 1))}. For
the marking happens independently, we obtain

ub(B)= /J Y 14x)P (“each point of ¢ in &(x,R) has a greater mark than x”)

xEp

- 1 ~
Pld)~ [ 3 15(x) | (1 kR 1dkP(dy).

XEw

Using lemma 1 we get

Wb(B)= [ 15(x) [ (1— Ry 01 dkpk(d(x, 9))

RAX
and by lemma 2 and integration with respect to &
wplB) =i I 9(b(x, R) ' PodT cpra(dx).

Substituting y= Txp and using T_.p(b(x, R))=w(b(0, R)) we obtain
upAB) =1z [ [w(6(0, R~ Po(dyprddx=ipEp, B(b(0, R))~'»4(B).

In particular, this says that the Matérn-(2)-thinned process &' has the in-
tensity ip—2AxEzd(b(0, R)) . If especially @ is a stationary Poisson process
with intensity 15, we get (see also [2]):

E@/(B)=vdB)/»d6(0, R){1 —exp (—iz»d(b(0, R))}.
Let us now compute the second moment measure of ¢'. For any point pro-
cess ¥ in R! we have ul(B,XB;)=ulB,N By)+aj(B,XB,). For the thinned
process ¢’ is stationary we get ud, (B, X By) = pwa(B; N By)+ap (B, X B,). Be-
cause of the construction of @ we obtain for x=a}(B,XB,)
x= [ b {1F 1 Bx8. (X1, Xa)1 (X1, Xa Ry, Koy ®)}P(dy)

M@,y (x k). (%2, &) Ew
with F—{(x;, Xo)RIXR4: x,—x3 >R} and
Y= {(xy, Xay kyy Ry 0): @0(b(X1 R)X(0, 1) =@(b(x,, R)X[R,, 1)),
@(b(x3 R)X(0, 1))=g(b(x5 R)X[kg 1))}.

Analogously to the computation of the intensity measure we get because of
independent marking

x M’ 3 1r n B.XB,(xv x?)o,’! Jlf(xl’ Xy kh k’v Q’)dk, dk[ p(d¢)

Xy, Xy €@
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with
F(Xyy Xy By, Rgy @)= (1 — Ry )P RNBx2 R—1
X (1 —kg)p(bles RINE RD=1(] —max {k;, ky})7(0Cv R) 0 blxa R)),
Integration gives

x= [ 5 16x, Xla(x)1a(%)8(x1, X ©)Pdy),

M x, x:€9

where

(X, Xg @)= 1 { 1 + 1 }
8Xn X2 ©) =G0 TR U b, R) U gb(x1, R) | Ab(%z R))
With lemma 1 and lemma 2 and because of the definition of the set F

= [ 16y, x0) [R(Xn X )P e x (AT @) (d(x,, Xa))

B, XB,

and, finally, by the substitution T.@=vy we obtain
ap (B X By)= B)l;B 1a( %y, Xg) ﬂ{ &0, x,—xy, tp)ﬁo, x,—n(d‘l’)agﬁ(d(xn X))

1

if the underlying point process is additionally isotropic, then the term
1xs, Xa) [ 80, %o— %1, ¥)Poss(@p)ap(d(xy, X))

only depends on | x,—x, | and by introduction of the reduced second moment
measure K(f), tcR+ (see [7; 8])

@ (ByXBy)= [ [ Ex 80, t Do x5 dR(Opadx,),

where of(x,) is for a sphere with midpoint x, and radius £ the portion o
that part of the surface which is contained in B,, K(t), t=0, is the reduced
second moment measure of & and t=(,0 0,..., 0).

If especially @ is a stationary Poisson process, we get (see also [2])

v4(Byn B.
By X By) = & 28 {1 —exp (= A7a(5(0, R}

m{ . [ 1 exp(—l-ﬁrd(b(o. R)) J+ exp (—150) }
+2 | fupaomle = :
X o8(x,)dva(b(0, 1))t4—"v,(dt)ra(dx,)

with ©=r4(b(0, R)Ub(t, R)) and z=r4(b(t, R)\ b6(, R)).

Finally, I am indebted to Dr. D. Stoyan, who inspired me to investigate
Matérn-(2)-thinnings of any stationary point processes, and to Professor
Dr. J. Mecke, who placed the paper [6] at my disposal.

~20
by
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