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A CONDITION FOR Z,~-INTEGRABILITY OF ENTIRE FUNCTIONS
OF EXPONENTIAL TYPE

TATIANA ARGIROVA

If f(z)is an entirc function of exponential type sk, C<k<a, sz=1, and if under

oo

some conditions on {/,}* _ the series Y f@aGye p>0,v-0,1,2, ..., s—1, are con-
n=-—co

oo _
vergent, then | ___ f(x) Pdx is convergent too.

Plancherel and Polya [1] proved the following
Theorem 1. /f f(z) is an entire function of exponential type c, 0 <c<a,
and if the series ¥ f(n) ", p>0 is convergent, then

[ fix) rde—K | f(n) 7,

where K depends only on p and c (not on f).

In [2] we generalized this theorem. Increasing the type of the function
from ¢ to s¢, (0<c<x,s>1 is an integer), we required convergence not only
of ¥ f(n) 7, but also of X f(n)|”, v-1,2,...,5s—1. Under these conditions
we established the convergence of [=_ f(x) 7dx. Now we extend the latter
theorem, replacing the integers n by complex numbers 4,

Theorem 2. Let f(z) be an entire function of exponential type such that

(1) f(z) = Aes =,

A const, 0<<k<a, s =1 is an integer. Let |i,} be a sequence of real or
complex numbers satisfying the conditions
(2) io 0y Ap—n <L, Anim An 200,

where | - const, o=const. (Il is convenient for our considerations to sup-
pose 1. -1. Evidently, we may do this without any loss of generality.) Let
p>0 and the series

o0

(3) S fGn) S O v-1,2..., 51,

n=— R=m— oo

be convergent. Then
P P

[ 00 2dx Ky 3 fha) K D P @) P +K SO

The constants K, r=0,1,...,s—1, depend on s, p, . and & only.
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The idea of this theorem aroused from a paper of Boas [3], where he
considered the case s=1. In the proof of Theorem 2 we employ his method.

For simplicity we shall treat in detail only the case s—2. Thus the condi-
tions (1) and (3) take now the form

(1" flz) = Ae*®z, A=const, 0<k<a.
3) S S r<cs, T fn)|r<ce.

n=-—eco n=-—oo

In what follows we need two lemmas.
Lemma 1. Let

) (i(z) =z fi'l(l—z,z.m —2/h_)

where {4,} is the sequence from Theorem 2. Then ((z) is an entire function
of exponential type n and

(4.1) |G(x+iy) =B(x +1), |y, =3L (z=x+1iy)
(4.2) Qi) | =C(1 4 2, )41, (k=T1, +2,..),
(4.3) G'(A) =D 3L - ., (B 41, £2,...),

where the constants B, C and D depend only on L and J.
Lemma 2. For the points z:|z—12, >6/2 and each ¢>0

(4.4) exp |(zr( sinf | —o)}/ G(re’?)— O(1).

The assertions of these lemmas with an exception of (4.3) are well-known
(see for instance [3])- So we shall prove only (4.3). Since ' i,—n|<L, by the
Cauchy Integral Formula

s _ 2! " G(z2) -
(04 (ln)— i :—AL sk (Z_—-_l,,)-" dz.

Estimating (’(4,) we may apply (4,1), since for the points z2: z -n —2L we
have 'Imz|=2L. For the same points ' z2—4,|=/ and Rez|=|4,!+43L. Hence
| G"(An) | = 4B( 2, +3L+1)/[3=D( 4, |+3L+1)¥,

where 0 depends only on L and 4.

Lemmas 1 and 2 enable us to find a proper interpolation formula for the
function f(z), that plays an important role in the proof of Theorem 2.

Let ¢>0 be an integer. Consider

Jn= Cf‘ﬂc)(c—z)G%twdc, (n=1,2,..)

along suitably chosen contours C,. According to the Residue Theorem
(5) Jo—2ni (Res z4-Res 0 X Res /).
k=0

It is easy to find the residues of the integrand at the points {=zand - i,
thus Res 2z = f(2)/27G%(2),
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Sk qf(Ag) L7 U7 R 4 ¢
(e —2)2 G208 1%, (Gp—2)G2 (M) 20T (Ap—2)G"¥(y) 2] (ip—2)G"2(Ag)A]

Res Ag-- —

We shall evaluate here in detail the residue at the point 7/~ O, which is a
pole of order g-+2. Near ;- (0 we have

S R T U (s B

(—2)G20) T Sz GO 12

11 , . Al () O
— e (7O @+ -+ )
S, gt
% (l-r T B zﬂ.ﬁ_...),
where ¢(2) -~ f(7)2?/G*() is analytic at the point -~ 0. Thus
i L0 o, | 4970
Res0 =G0+ o+

Now if we knew that J, -0, when n -co, we would have from (5)
(6) f(2) - G*(2)z7 X Res ix-+ GX2)/22P,1(2),
R0

which would give us an interpolation formula for the function f(z). (Here
P i(2) ~@0)+=9'(0)z+ - - - +77'(0)29+1 /(¢ + 1)!— i. e. this is the sum of the
first ¢ 2 terms of the Maclaurin series of @(2)=2°f(2)/G*z)). But we avoid the
necessity of proving that J, - ~0 and establish (6) going another way.

Let ¢ -16L +5. Put

H(z)~ s SE)GA2)T G, Sen)GHz)927
@) o (A= 2PG"2(A ) s (2 —2)G 2T
/
o JEDGT G227, f(A)GH2R
oo (= 2)G"3(R,) A7 oo (g—2)G"Lp) AL
where the prime indicates the omission of the term with &~ 0.

It follows from the convergence of the series X|f(4,) 7 and X f'(4,) ”
that the sequences {f(4,)} and {f’(i.)} are bounded. Let | f(1,)|<<C,,  f(4,)|<C,,
(n=0, +1, +2,...). Taking this into account, as well as the special choice of
¢, we find out that all the series in (7) are uniformly convergent in any bound-
ed domain. Hence F(z) is an entire function. Moreover

(8) HOn)=f(An); H'(in)=F(in).

The first equation is evident, since ((z)/z—4,=G'(1,) for z-— i, and the se-
cond can be obtained by considering the Taylor series of ((2)z—4, about
Z =4,
Now consider the function
() - S(E)—H(2)— G¥2)Pg+1(2) 2% |
9) w(2)= .%z)

The equations (8) show, that the points 4, are not singularities of y(z). The
point 2-=0 is a zero of order ¢+2 of the function /4z). Having in view what
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P,.1(z) is, we see, that z=0 is a zero of the same order of the fun-
ction (f(z) —G2(z)P,.,)z—*. The point z=0 is also a ¢g+2—fold zero of the
denominator of w(2). Thus y(2) has no singularities, so it is an entire function.
Moreover it is of exponential type.

Further, to show that w(2)=0, we estimate y(re’?) for large r and
near —+m/2.

Denote by 7,, T, T, and 7, the consequtive sums on the right-hand side
of (7). Then
1oy V@ SSEECE + T,/29G¥2) +|T5/29GX(2) |+ | Ts/29G*(2)

I T 29G2) 4+ Papa(2)28H8 | =Uy+-Us+- Uy + U, + U+ U,

In the first place we notice that the inequality |f(2) | =Ae*=,(0<k<n),
ogether with the boundedness of the sequences { f(1,)} and { f'(2»)} implies (see [4])
f(z) =Ae** . (y—Imz). By this inequality and (4.4) we get

Uy M exp(—2r|(= k) sint|—aol},

where M depends on f, 6 and o, while ¢ is arbitrarily small. Hence U, is bound-
ed on the ray argz—6 for large r, if 6 is so near to t=x/2, that
(x—k)|sinf z6>0. Moreover, U, — 0, when r — .

Consider now (/,. Since the sequence { f(4,)} is bounded and G'(4,) satis-
fies (4.2),

FIAPS ) 1| —" 3 (LT il
2 == in- 2!280'2(;’”)“14’1'\" S l—z A,

(R= const). It follows from the condition Z,—n =L that |Im4, L. But then
for any 2z for which Imz 2L we have (z—1,/=|y —/Imi, =y—L=L.
Hence, if Imz|=2L,

_ R 20412 M0 _RoT, (v by P2
U, \_vl_[f‘; | 4, 19 <"1—_‘?"w 7
and this is bounded, since ¢ 16L-+5. Moreover, we see that U,-+~0, when
—3>00.
Proceeding in the same way (using (4.3) when necessary), we find out
that {/,, U, and U; are also bounded for |y 2L and tend to zero when

y!-»~. Finally,
Us|=| Pyr1(2)/2772 —0,

because P,., is a polinomial oi degree at most g+ 1.

Thus w(z) is an entire function of exponential type, bounded on four rays
(arg z-—#, Hnear +/2), any two consequtive ones of which make an angle of
less than =, and hence by a Phragmen-Lindel6f theoremy(2) is bounded every-
where and so is a constant. This constant is zero, since as we noticed, all
terms in (10) tend to zero for z=iy, y-—» . So y(z) =0. Once this is proved,
we have from (9)

(1n f(2) = H(z) + GX(2)Py+-,(2)/27,
which is desired interpolation formula for f(2).
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Now we have everything we need to prove Theorem 2. We have to ve-
rify that /= f(x) 7dx<cc.
Let m be an integer. Obviously

oo

7 ‘f(x) ,l'dx 2 O\: ’ l.f(Y ”I)‘l'dx \‘ ’ ‘f('t } .m‘ /ﬂl){pdx
In view of the inequalxty m-—1, =L, for each x belonging to the interval
—L-x -L we have z = x+m A, 2L, i. e. z is a point from the square
—2L=x 2L, -2L--y<2L. Therefore, if /" is the boundary of the square,

max f(x+m) —max f(z-+4im) -~ um

—L=x=L r
From here, on the base of the above inequalities, we get
T f(x) Pdx- 2L S uh.

It is clear now that our task reduces to estimating w,. Put A7 —1,1m —2,.
Clearly im—-0; i™—n|=<2L; |im—i7 '=25. The sequence {i™} possesses the
properties (2) of the sequence {i,} with constants 2L and 2¢.

Let G,(z) denote the function (4) formed with i™ instead of i,. Then
G(2) satisfies (4.1), (4.2) and (4.3) with L replaced by 2L and C and D being
independent on m. Let f,(z)— f(z+4,,)sin?t2(»z), where ¢ ~32L+5 and >0
is such that (¢ +2)y-+2k<<2+ and n<<1/L. Then the type of f,(z) is less than
2n. Besides, since sinznz and coszz are bounded in the strip y <2 containing
all the points A7, we have

’fm(",,m)' ‘Kl if(lru'm)‘ O(l)' f'm (l:') *K[ f’(}-n: m) +K2 ;f(1n+m) = 0(1)'
It is seen now, that f,(z) satisfies all the conditions insuring the validity of

the mterpolatxon formula (11). In this case P,y (2) =0, since f,(z) has a zero
of order ¢-+2 at the point z—0. Thus, applying (11) we obtain

Sm(2) — f(z+4,,) sin?+? (y2) = w f Ginsm) G2(2) sin?+? (nil")2
S ne—em (M ZRG M AP

(13)
LS M@ s it S S, m_ﬁi‘f_’:'ﬂ"'_ﬁ"’_"m“""’
n=-—oo 11"(_2)0 _(IM)( m)q 1 N —00 / —Z)G (AM)(‘M)q
m
L5 S Une O ST TG SO TG E) @+ D s AT cos (ks
nm—o (AT 2)G3 (A (Y — (A" —2)G2 (MY (A

In order to estimate u,, we make use of (13). Beforehand we consider the
function G,(z)/z i™ for z¢ I

Suppose ™ fixed. Let first z¢ /', |z—a7 ~1/2. Since for any z¢I,
Imz |- 2L, G,(z2) satisfies (4.1) and we have

G(2)/2—Am |2 2A (| % 1= 1P 2A(2L -1

Let now ¢ /', but |z—i™|<1/2. Applying the Maximum principle for the
function @G,(z)/z—A™, which is analytic in the whole plane, we get
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Gm(2)'z—im - max ‘m(2)/z2—Am | <2A( x|+ 1pBL<2A(2L+4-3)%,
M =12
since taking in view that the distance between i™ and /' is less than 1’2, we
may conclude, that for any z:/z—Ai™|=1/2 we have Imz <2/+1 and so
(4.1) is valid again. Thus in both cases treated above

(14) Gn(2) z—im =N, z¢l,

where NV depends neither on n nor on m (only on L and o).

Estimating the terms on the right-hand side of (13), we apply (14), as well
as (4.1), (4.2) and (4.3). Besides we have in view the boundedness of z7, sinyz
and cosyz along the contour /°. Let us noticein addition,that min sin 7+%z,
=1/y>0, (n<1/L), and i™ 8, n40. Thus grouping in (13) the four sums
which contain f(4,..), we obtain

ol & w4 BP0 2T 60T G ) D
Saianbiint P oy —so |am (e

(M= const depends only on Z and 6). Next we have

Fnsm) @™+ = [Gnim) | BT

n=-

(15) m

',I 143

n
where

a:‘ =M1( 1:‘ + 7L)3?L+'i”/ 1:’ 7; b":' = MQ(] + ).:' )IGL" 2 A.-”:' q; (Ml, Mgi const).

We know that 47| -8 when n+0 and |n 2L=< A7 = n|+2L, hence, if
n >2L
ar<M(n +9Ly2+3/(n 2Ly ; br=My n +3L)'" /(I n|—2L)1,
and, in the case when n =2L
am<My(11LYP+3/8¢5  bm =M, (SLYS+2/80.

Thus we get a™<a,; b7~ b,, (a,=0, b,—0), where a, and b, do not depend
on m and by our choice of ¢ (¢=32L-5), the series Za, and Xb, are conver-
gent. It follows now (15)

My == § f(1n+rn) a,+ -\-“‘ f’()"l—m).bm

n=—oo =

or, which is the same

(16) Bm= '\-“ ﬁiv) Go-m+ 3 f’(’tu){br'—m-
V= o0

VU= -—00 -

We shall treat separately the cases p>1 and p. 1.

Let first p>1. In order to complete the proof of Theorem 2 we need the
following

Lemma 3. (See [1]). Let p>1 and let the series X x|’ and Xb,= B,

m

n
b,>0, be convergent. If V,S3by—m Xo, then X V, P<BrI Xx,|".
v v



264 T. ARGIROVA

The inequality (16) implies
wh 20 [(Say—m flio) )" (Zby-m f(4) )]
v v

Now, summing up along m and applying Lemma 3 we get

. .
Swp 27((Sagy X flig) " H(Sb S fli) 7]
m v = oo v - -—00

or
(17) Sub - 20(APY fliy) P+ BPE flig) 7).
m v n
Let now p 1. In this case we chose ¢ in such a way, that pg=32pL
+3p+2 (then ¢ ~32L-+5 too). By Jensen’s inequality we get from (16)
wb =Yaf |fti,)!"+3br  f'(dy) *.

By the special choice of ¢ the series Ya@?=A, and Xb2— B, are convergent

n n

thus, summing up along m we obtain

(18) S =AY (fio) "+ B2 (ko) .

The inequalities (12), (17) and (18) show that Theorem 2 is true, i. e.
[ flx) 7dx Ky X f(k,) "+Ky T f(0n) 7,

where the constants K, and K, depend only on L and 4.

The case s>2 of Theorem 2 may be handled in the same way on the
base of a respective interpolation formula, which could be found out by means
of the integral

A
Jn= ",/ (¢ — 2) (N0
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