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VECTOR TOPOLOGIES FOR THE MULTIPLIER EXTENSIONS
OF ADMISSIBLE VECTOR MODULES

ARPAD SZAZ

In this paper, to provide a satisfactory topological foundation for an abstract convolution
calculus, vector topologies for the multiplier extensions of admissible vector modules are defin-
ed in a natural way. In particular, the Mikusinski field of operators is given in a natural
locally convex topology which is, to some extent, compatible with the sequential convergence

of Mikusinski too.

1. Notation and corrigendum to [22]. Throughout this paper & will al-
ways stand for an admissible s-vector module, and we shall focus our atten-
tion to its multiplier extension W{—=Mi(k, B) which is an Vi =N(#, B)-module
[22]. Moreover, we shall mainly use the notation and terminology of the first
section of [22], therefore the reader is asked to read it thoroughly.

The paper [22] needs some corrigendum.In Definition 1.1 we forgot to stress
that 8--{0}. Definition 1.6 contains two misprints, namely 9 must be replaced by
I in the curly brackets. The addition in ), according to our original nota-
tion [21], should be denoted by a fat plus sign.

Finally, we remark that meantime we observed that our construction of
the maltiplier extension of admissible vector modules greatly resembles
that of quotient modules defined by Gabriel topologies [19]. Moreover, we also
observed that W. Stowikowski had also initiated an abstract theory for
generalized functions [16—18], however it seems not to offer that flexibility
and power as ours [21—28, 11].

2. Vector topologies for 4 and #. Before topologizing 9t and i, we
have to assume that there are topologies associated with 4 and 8. The fol-
lowing axioms are patterned after the prime example of the admissible @-vec-
tor module & [21].

Definition 2.1. Suppose that

(IV) # is equipped with a vector topology such that the algebra multi-

plication is separately continuous ;
(V) B is equipped with a vector topology such that the module multi-

plication is separately continuous; N
(VI) the topology of +# is finer than the restriction to & of the topo-

logy of . \
Remarks 2.2. We shall call such modules admissible vector—topological
vector modulles. Moreover, if the above vector topologies are locally convex, then
we shall simply speak of admissible locally convex vector modules.
All the various convolution vector modules occuring in the theories of
Scwartz distributions, Mikusifiski operators and other similar generalized func-
tions are locally convex. However, for the sake of greater generality, it seems
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reasonable to consider more general vector topologies. The reader, who is in-
terested only in the locally convex case, may replace the expression ‘vector
topology’ by ‘locally convex topology’ throughout this paper.

Since convolutions in the most important particular cases are separately
continuous, but surely not continuous, we were allowed to require only the
separate continuity of multiplications in axioms (IV) and (V).(Separate continu-
ity in most of the cases implies a stronger continuity property called hypo-
continuity [29].)

The reason why the vector topologies in the above axioms are not sup-
posed to be Hausdorfi will be explaired by our forthcoming procedure. Namely,
we shall use inductive limits of vector topologies, and the Hausdorff property
is not, in general, preserved by taking inductive limits [1].

3. Inductive limit decompositions of 9 and 9. The main difficulty in
topologizing O and 9 is that their elements have no common domains, and
therefore the usual theory of function spaces [10] can not be applied directly.
To overcome this difficulty, we shall decompose 9 and 9 into the unions of
their more simple subspaces.

Definition 3.1.Let J be the family of all ideals I in # such that I is
not a divisor of zero in B. Moreover, for 1¢3, define WM,={F¢WM: Ic Dg}
and W,={CeN:[c D(A)].

Theorem 3.2. (i) With inclusion 3 is a directed set such that I,NI,
1, =1,€3 for all 1, 1,¢3.

(i) For each 1¢3, W, and ), are subspaces of ) and ), respectively
such that K, £y, B, WMy, and N =N SN, Mg =N SMy-

(iii) For each 1, 1,¢3, we have 2, + N, CNy, 7,y + M, VY, 4, and
‘“[‘ *‘.)?,2C‘Jl‘,‘.,2, ‘.Uk,l * ‘)tlzc ‘mm,,_,-

(iv) For each I\, I,€3 such that I, 51, we have ), C,, and m,, <My,

(v) We have Wt | N, and M= |J M,

7€d 7ed

Prooi. This follows immediately from the corresponding definitions and
from some simple facts proved in the first section of [22]). For example, the
last inclusion in (iii) follows immediately from the fact that

1+ 1,C Dps D= (A)C P YDp) = Droa C Dpvy

for all Fey, and @eV,.

4. Vector topologies for )i, and 2)i,. [‘or each /¢ J, )i, and )iy may be identi-
fied as vector subspaces of the function spaces A’/ and @/, respectively. The
most widely used topologies for function spaces is those of pointwise conver-
gences. Therefore, it seems natural to consider 9, and 9, to be equipped
with the corresponding topologies of pointwise convergences on / [10, p. 220].

Definition 4.1. For each 1¢3, equip N, and W, with the coarsest
topologies for which the mappings

& = D(p) from N, into &, and F —— Fl(g) from N, into B,

respectively, are continuous for all ¢¢ l.

Theorem 4.2. (i) For each 1¢3, ), and 9, are topological wector
spaces such that the topologies of K and # are finer than the restrictions of
the topology of N, to K and A, respectively, and the topologies of @ and
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W, are finer than the restrictions of the topology of W, to $ and W, res-
pectively. Moreover, the restriction of the mualtiplilation = fo N XN, and
M 4 XN, are separately continuous mappings into N, and Y, respectively.

(ii) For each 1[,, ly¢3, the restrictions of the addition + to M, XM,
and ~)_‘,;I‘y \mm are continuous mappings into Nnt, and Wy, n 1o respectively ;
and moreover, the restriciions of the multiplication = to ) XN, and M,
<), are separately continuous mappingsinto Vi, <, and W, -, respectively.

(iliy For each 1), I,¢3 such that 1,51, the topologies of 3, "and W,
are finer than the restrictions of the topologies of Vi, and W, to Ny,
and W, respectively.

Proof. This follows immediately from some well-known properties of pro-
jective limit topologies [I; 8] and from the corresponding properties of the to-
pologies of « and B. For example, the separate continuity of the mapping
(F, @) — F = @ from M, XN, into N+, follows immediately from that of
the mappings

(F, @) — (F=p) (9= y)— Flo)=Ply) (o, v)el,X1])
from Mi;, XN, into L.

Remarks 4.3. (i) If # and B are locally convex, then W, and W, are
also locally convex.

(ii) If B is Hausdorff, then Y, is also Hausdorff. (in this case, by axiom
(V1) in Definition 2.1 and (i) in Theorem 4.2, # and W, are also Haus-
dorff.

f;i)ii) If the continuity of multiplications were required in axioms (IV) and
(V) in Definition 2.1, then the continuify of multiplications could be stated
in Theorem 4.2. J

The above assertions are also immediate consequences of the well-known
properties of projective limit topologies.

5. Vector topologies for )i and ). To topologize )i, and A}, we have
used projective limit topologies in the preceding section. From Theorem 3.2,
it is quite obvious that to topologize 9! and W we shall now use inductive
limit topologies [1: 8].

Definition 5.1. Equip )t and Y\ with the finest vector topologies for which
the identity mappings of the spaces I, and W, into ) and M, respectively,
are continuous for all 1¢€3.

Theorem 5.2. W is an admissible vector-topological )i-vector module.

Proof. Everything stated here is clear, except perhaps the separate con-
tinuity of multiplications. For example, we show that the mapping (F, @)
——— Fs@ from M <N into M is separately continuous. For this, by a known
property of inductive limit vector topologies [1;8), we need only to show
that, for each /,, /,¢J, the mapping (£, @) F=® from M, XN, into M is
separately continuous. However, this follows immediately from (ii) in Theorem
4.2, since the identity mapping of W, -, into M is continuous.

Remark 5.3. In Definition 5.1, J may be replaced by any cofinal subset
of 3 [10] without changing the topologies of )t and AN.

Thus, the special vector-topological properties of 9 and )i greatly depend
on the minimum of cardinal numbers of cofinal subsets of J. (Observe that J
has a finite cofinal subset ii and only if NJ¢€J.)
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Remark 5.4. If # and 8 are locally convex, then in order that ) be an
admissible locally convex $i-vector module, we have, in Definition 5.1, to con-
sider v and Y to be equipped with the finest locally convex topologies for
which the identity mappings of the spaces V)i, and M, into 9 and M, respec-
tively, are continuous [8]. Namely, incountable inductive limit of locally convex
<paces is usually not locally convex [1].

Remark 5.5 The topologies of 9 and W) are compatible with the Mi-
kusinski-type convergences lim\,ll and lim\“i |24], respectively, in the sense that

they are the finest vector topologies with respect to which the Mikusinski-type
convergent nets are still convergent. However, this fact seems to have no par-
ticular importance for us.

Remark 5.6. Since the topologies of 9 ad W do not, in general, inhe-
rit the advantageous properties of those of i, and 9, (even the convergenc-
es in them can not usually be described completely), the reader who does
not want to trouble with difficult inductive limit topologies may simply con-
sider 9! and Y){ as the union spaces [6] of the spaces i, and ;.

6. An important particular case. One of the most important particular
cases is the case when $% has no proper divisors of zero, 1. e, for ¢¢+4 and
f€®B, we have [+ @=0 if and only if /=0 or ¢=0. Its particular case, when
A4~ B is an integral domain, or more specially, a testing function space for
Mikusinski operators was studied by several authors.

We shall now consider a slightly more general situation.

Definition 6.1. Let & be the family of all elements of -t which are
not divisors of zero in B, and suppose that

(VII) Sn/1-+=) for all I¢3.

Remark 6.2. In this case, we have

v > f > ¢
Ot {,, :(f,,.,v»tusxak} and W) {,v o, f)ed \,/‘.3}

according to Definition 1.19 in [22].
On the other hand, in this case, the family of all ideals /, of s generated

by @ ¢ form a cofinal subset ot J. Thus, by Remark 5.3, we have to consider
only the subspaces

Mo Ny, and My MYy, (ped)

of 9 and )i, respectively. Moreover, for each ¢ ¢, ), and ), are algebraic-
ally and topologically isomorphic to s and @, respectively.

Theorem 6.3. The topologies of )i and ) are finer than the quotient
topologies on )\ and I for the mappings

(p,y)—— " from S into N, and (¢, f) — f from S ®B into W,
p . p
respectively. . .
Proof. Let 1-\‘\‘“ be the topology of W) as given in Definition 5.1, and

denote ‘..\';m the finest topology on 9 for which the mapping (¢,f) — f;

from the product space & <8 into ) is continuous. We have to show that
Sin C.‘s‘“i' i. e., the identity mapping of (), :S‘m) onto ()i, :Ngm) is continuous.
For this, we need only to show that for ¢ ¢, the identity mapping of ),
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into ("M, ;~\‘;“‘) is continuous. However, this is quite obvious since the identity
sl [ 8

mapping of Wi, into (W, ;-S;“z)is the composition of the mappings-,{ — (.f) (@of)
; from &> #B into (M, FS'\“,) and the above two
L
f
9

fromY){, into & < and (¢, /)

mappings are continuous. (The continuity of the mapping — (¢, f) from

M, into X B follows at once the fact that it is the composition of the con-
tinuous mappings /f —-f:qf (@) from )i, into @B and f— (¢, /) from B
into & <X8.)

The corresponding assertion for 9{ can be proved quite similarly.

Remark 6.4. The above quotient topologies on 9t and M are usually
not vector topologies since & is not a vector space.

A quotient topology for the field of Mikusiriski operators was greatly uti-
lized by T. K. Boehme in [4].

It is an interesting question when the above quotient mappings are open
for the quotient topologies, or for the original topologies of i and Mi.

REFERENCES

I.N. Adasch, B. Ernst, D. Keim. Topological vector spaces (The theory without con”
vexity conditions). Lecture Notes in Math., 639. Berlin, 1978.

2. J. M. Anthony. Topologies for quotient fields of commutative integral domains. Pacific
J. Math., 36, 1971, 585—601.

3. T. K. Boehme. On Mikusinski operators. Studia Math., 33, 1969, 127—140.

4. T. K. Boehme. The Mikusinski operators as a topological space. Amer. J. Math., 98,
1976, 55— 66.

5. M. Budincevié Topology and convergence classes for the field of Mikusinski operators
Mat. Vesnik, 14, 1977, 91—101.

6. A. Friedman. Generalized functions and partial differential equations. Englewood
Cliffs, 1963. ;
7. 0. Had 2i¢. On the topological structure of Mikusinski operators. Mat. Vesnik, 8, 1971,

321—330.
J. Horvath. Topological vector spaces and distributions. London, 1966.
S.Jeyamma, P. V. Ramakrishnan. On the convergence of Mikusinski operators.
J. London Math. Soc., 8, 1974, 582—584.
J. L. Kelley. General topology. New York, 1955.
S. Komédcsi, A. Szaz On the multiplier extensions of admissible semitopological vec-
tor modules with direct sum decompositions. Comment. Math. Univ. St. Pauli, 27
1978, 81—90. ’
R. Konishi, A. Tabata. Some convergences on the Mikusidski operator field. Com-
ment. Math. Univ. St. Pauli, 23, 1974, 135—137.
J. Mikusinski. Operational calculus. New York, 1959. s
D. O. Norris. A topology for Mikusiiski operators. Studia Math., 24, 1964, 245—255.
H. S.Schultz A very weak topology for the field of Mikusiiiski operators. Pacific J.
Math., 47, 1973, 251—255.
16. W. Slowikowski. A generalization of the theory of distributions. Bull. Acad. Polon.
Sei, CL 1L, 3, 1935, 3—6. )
W.Slowikovski. A generalization of Mikusiiski’s operational calculus. Bull. Acad.
_ Polon. Sci., Cl. 111, 4, 1956, 643—647.
W. Stowikows ki. A. theory of extensions of map-system | Fund. Math., 46, 1959,
243—275.
B. Stenstrom. Rings of quotients. Berlin, 1975.



280

20.

21.
22.

23.
24.
25.

x

2>

A

=N

A. SZAZ

. A.Struble. A genuine topology for the field of Mikusiiiski operators. Canad. Math
Bull., 11, 1968, 297—299.
. Szaz. Convolution multipliers and distributions. Pacific J. Math., 60, 1975, 267--275.
. Szaz. The multiplier extensions of admissible vector modules and the Mikusiiki-type
cenvergences. Serdica, 3, 1977, 82—87.
Szaz. On the multiplier extension of commutative A *-algebras. Comment.Math. Univ.
St. Pauli, 26. 1977, 17—23.
Szaz. The Mikusiaski-type convergences and their induced topologies. Bull. Acad.
Polon. Sci. Sér. Sci. Math., 27, 1979, 83—89.
. Szaz. Traditional transformations of the convolution calculus in an abstract setting.
Glasnik Mat., 14, 1979, 165—173.

26. A. Sziz. Discrete Fourier analysis for quotient multipliers. Math. Nachr., 93 1979, 233—238.

27. A. Szaz. On the continuity of quotient multipliers. Mat. Vestnik (to appear)

28. A. Szaz. laversion in the multipler extension of admissible vector modules. (to appear)

29. F. Treves. Topological vector spaces, distributions and kernels. New York, 1967.

30. K. Urbanik. Onquotient-fields generated by pseudonormed rings. Studia Math., 15, 1966,
31—33.

31. L. Waelbroeck. Topological vector spaces and algebras. Lecture Notes in Math., 230.
Berlin, 1971.

32. E. F. Wagner. On the convergence structure of Mikusinski's operators. Studia Math.,
27, 1966, 71—80.

33. S. Warner. Compact rings. Math. Ann., 145, 1962, 52-—63.

34. J. Wloka. Limesriume und Distributionen. Math Ann., 152, 1963, 351 -409.

Department of Mathematics Received 30. 1. 1950

University of Debrecen
H-4010 Debrecen, Hungary



