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SOME PROPERTIES OF RIGHT INVERSES
D. PRZEWORSKA-ROLEWICZ

let K, and R, be right inverses of commutative linear operators D, and D,. A neces-
sary and sufficient condition for R; and R, to be commutative is given.

Let X be a linear space (over a field & of scalars). We consider a linear
(i. e. additive and homogeneous) operator A defined in a linear subset D, c X,
called the domain of A, and mapping D, into X. We denote by L(X) the col-
lection of all such operators. Write: Ly(X) {A¢L(X): D,=X]. Z, will stand
for the kernel of A, i. e. Z,={x¢,:Ax--0}.

Definition 1. An operator D ¢ L(X) is said to be right invertible if
there exists an operator R ¢ LX) such that (1) RXc Dy, (2) DR= I, where
[ denotes the identity operator.

The operator R is called a right inverse of D. The set of all right inver-
tible operators belonging to L(X) will be denoted by R(X). The set of all
right inverses for an operator D ¢ R(.X) will be denoted by R,

Let D ¢ R(X). The kernel Z, is called the space of constants for D and
every element z ¢ Z, is called a constant.

Deifinition 2. An operator F ¢ L(X) is said to be an initial operator
for an operator D ¢ R(X), corresponding to a right inverse R of D if (i) FX

-Zp, F*=F. (ii))FR=0 on X.

The definition immediately implies that DF =0 on X.

One can prove the following facts;

1) Let R be a right inverse of D ¢ R(X). Then F ¢ L(X) is an initial ope-
rator for [ (corresponding to R) if and only if the following identity
F-=I1—RD holds on @, (cf. Theorem 2.1. of [1]).

2) Suppose that we are given D ¢ R(X) and an operator F ¢ L(.X) such that
F?=F and FX=/Zp. Then F is an initial operator for D corresponding to the
right inverse R=R--FR, where R is uniquely defined independently of the
choice of a right inverse R of [ (ci. Theorem 2.4. of [1]).

3) Let D¢ R(X) and let R and R, be two right inverses of /) which are
commutative: R,R-—-RR,. Then R,=R (cf. Proposition 2.3. of [1]).

4) Let D¢ R(X) and let F|, F be two commutative initial operators for
D: F,F-FF,. Then F,=F (cf. Proposition 2.4. of [1]).

I. H. Dimovski posed the following question: Suppose, we are given
two commutative right invertible operators. Do right inverses exist for these
operators which also commute?

The following theorem gives some answers to this question.

Theorem 1. Suppose that D¢ R(X), R ¢ Dp i~ 1, 2) and

(1 D\D,- D,D, on Dp,NTp..
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A necessary and sufficient condition for the operators R, and R,to be com-
mautative is that there exists an operator A¢ LX) such that

(2) F,A=0, Fy,D;A-0,

where F,; is an initial operator for D, corresponding fo R; (i -1, 2).

Proof. Write: D=D,D, By assumption (1) we have also D=D,D,. It
is clear that Qle operator [ is right invertible and then has two different right
inverses: R, -~ RR, Ry~ RR,. Indeed, DR, D,D.R\Ry~ D;DiR\Ry= DyRy

I, DRy~ D,DyRsR, = DyR, = 1.
Denote by F, an initial operator for D corresponding  to K,. We have

‘\\
on ITp

Fi=1-RD=1 RR,D\D,=1 RRDD =1 R(I—F)Dy
ZJ*KQ'RﬂQ*E-QﬁQ-
R By Theorem 2 in [2] there exists an operator A ¢ L,(X) such that R,—R
-}-FIA, i. e.
3) RyRy = R,Ry + (F,— RiF>D ) A.

We are looking for an operator A such that the component (F,— R, F3D;)Ain
(3) disappears.
Sufficiency. If F{A=0, Fe0,A=0 then we have

RyR = R\R+(F, RF,D)A—RR,+FIA—RF,D\A=R\R,,
i. e. the operators R, and R, commute.

Necessity. Suppose that R R, =R,R,. Write U=F AR F,DA,i. e
U=RR,—R,R,~0. We have to show that F,A=F,D,A=0. But, by defini-
tion, F,R,~ 0 and F;=F,. Thus 0=FU=FA-F,R(F,D,A)=F,A, and we
have 0—U- —R,F,D,A. Acting on both sides of the last equality by the ope-
rator D;, we find 0=-D,U- —~DyR,FyD,A - - FyD,A what was to be proved.

Remark 1. It follows from the proof of Theorem 2 in [2] that we can
put A= Ry —Ry = RiR,— RyR;.

Remark 2. It D,—D,=D and R,, Ry¢ R, then the condition RRy= Ref?y
implies Ry~ R, (cf. Proposition 2.3 in [1], as we have mentioned at the be-
ginning). In this case we have A-=0.

Now we shall give some conditions for an operator to be a right inverse-

Theorem 2. Suppose that A ¢ L(X). If there exists an operator B ¢ L(X)
such that BXC 7T,

(i) kerB--{0}.

(ii) the operator P~ BA (defined on T,) is a projection into ker A.

(ifly PB=0
then the operator A is right invertible, B is a right inverse of A and P is
an initial operator for B corresponding to R.

Proof. By definition, 72--P and PP,C kerA. Observe that the opera-
tor P is a projection onto ker A. Indeed, if x¢kerA then Ax-=0. Hence
Px=x BAx=x and P is a mapping onto.

Suppose that x ¢ D, is arbitrarily fixed. Then Px=x—BAx¢ ker A. Thus
A(Px)~0 and Ax —~ABAx = Al—BAx- APx 0. The arbitrariness of x implies
that A- ABA on T,
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Hence AB=ABAB. Writing U -AB we obtain U?=U, which implies
that the operator /—=AB is a projection. Moreover, D,;=D 3=Dz=X.

Suppose that U</ on X. Then there exists y¢.X such that y=0 and
v=Uy —y=0. Since U’=U, we conclude that ABv=Uwv=U(Uy—y)=U?y
—Uy=Uy—Uy=0. Thus

4 ABv-0
and BA(Bv)=B(ABv) -0, which implies that
(5) PBv - Bv— BA(Bv)= Buv.

On the other hand, (4) implies that Bv¢ kerA. Thus, the condition (iii) and
(5) together imply that Bv=P(Bv)- PBv=0. Since Bv=:0, the condition
(i) implies that ©—0 which contradicts to our assumption. Thus ABy—=y for
all y¢ X, i. e. AB--/ on X. We therefore conclude that B is a right inverse
for A and that P is an initial operator for A corresponding to B.

The following question arises: Will conditions (i), (ii), (iii) be all essential
for the proof of Theorem 27?
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